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Preface

In the past thirty years, (two-dimensional) conformal field theory has been devel-
oped into a deep, rich and beautiful mathematical theory and the study of conformal
field theories and their applications in mathematics and physics has become an ex-
citing area of mathematics. It has led to new ideas, surprising results and beautiful
solutions of various problems in different branches in mathematics and physics, in-
cluding, but not limited to, algebra, number theory, combinatorics, topology, geom-
etry, critical phenomena, quantum Hall systems, disorder systems, quantum com-
puting and string theory, and is expected to lead to many more.

During June 13 to June 17, 2011, a workshop “Conformal field theories and ten-
sor categories” was held at Beijing International Center for Mathematical Research,
Peking University, Beijing, China. This workshop was one of the main activities of
a one-semester program on quantum algebra from February to July, 2011 at Beijing
International Center for Mathematical Research. It was the aim of the workshop to
bring together experts from several different areas of mathematics and physics who
are involved in the new developments in conformal field theories, tensor categories
and related research directions. Correspondingly the areas covered by the workshop
were broad, including conformal field theories, tensor categories, quantum groups
and Hopf algebras, representation theory of vertex operator algebras, nets of von
Neumann algebras, topological order and lattice models and other related topics.
Each of these fields was represented by leading experts.

The simplest class of conformal field theories are rational conformal field the-
ories. In 1988, Moore and Seiberg obtained polynomial equations for the fusing,
braiding and modular transformations in rational conformal field theory. They ob-
served that some of these equations are analogous to some properties of tensor cat-
egories. Later, a notion of modular tensor category was formulated mathematically
and examples of modular tensor categories were constructed from representations
of quantum groups. The work of Moore and Seiberg can be interpreted as deriving a
modular tensor category structure from a rational conformal field theory. Since then,
the theory of various tensor categories has been greatly developed and has been ap-
plied to different areas of mathematics and physics. Now the theory of tensor cate-
gories not only provides a unifying language for various parts of mathematics and
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vi Preface

applications of mathematics in physics, but also gives deep results and fundamental
structures in different branches of mathematics and physics.

On the other hand, though a number of examples of modular tensor categories
were constructed at the time that the notion of modular tensor category was intro-
duced, it took many years and a lot of efforts for mathematicians to directly construct
the modular tensor categories conjectured to appear in rational conformal field the-
ories. Many mathematicians, including in particular Kazhdan-Lusztig, Beilinson-
Feigin-Mazur, Finkelberg, Huang-Lepowsky, and Bakalov-Kirillov, contributed in
1990’s and early 2000’s to the construction of the particular class of examples of the
modular tensor categories associated with the Wess-Zumino-Novikov-Witten mod-
els (the rational conformal field theories associated with suitable representations of
affine Lie algebras). However, the construction of even this particular class of ex-
amples was not complete until 2005 when Huang gave a general construction of all
the modular tensor categories conjectured to be associated with rational conformal
field theories. The corresponding chiral rational conformal field theories are thereby
largely under control. Indeed, many problems in rational conformal field theories
have meanwhile been solved.

In the workshop, new developments beyond rational conformal field theories and
modular tensor categories and new applications in mathematics and physics were
presented by top experts. Here we would like to mention especially the following:

1. Construction of interesting tensor categories from representation categories of
Hopf algebras, as reviewed by Andruskiewitsch in his overview talk and also in
the contribution by Andruskiewitsch, Angiono, García Iglesias, Torrecillas and
Vay in this volume.

2. New categorical techniques and structures in tensor categories, as reviewed by
Ostrik in his overview talk. One also should include here the Witt group as dis-
cussed by Nikshych and Davydov and Hopf-monadic techniques as explained
by Virelizier. In a sense, Semikhatov’s contribution in this volume using Hopf-
algebraic structures in representation categories interpolates between this point
and the preceding point.

3. Applications to topological phases and gapped systems as reviewed by Wen in
his overview talk and also in the contribution by Wen and Wang in this volume.
The study of the Levin-Wen model as discussed by Wu is an important example
of such applications.

4. Realization of the tensor-categorical structures in lattice models as in Fendley’s
overview and Gainutdinov’s talk.

5. New developments in the representation theory of vertex operator algebras, es-
pecially the nonsemisimple theory corresponding to logarithmic conformal field
theory, as reviewed by Lepowsky’s overview talk and in the contribution by
Huang, Lepowsky and Zhang in this volume. Recent results on representations
and the structure of the representation category were reported by Adamovic,
Arike, Milas and Miyamoto and also in the contributions by Adamovic and Milas
and by Miyamoto in this volume. To some extent, Tsuchiya’s talk also went in
this direction. Connections to logarithmic conformal field theory were discussed
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by Runkel and Semikhatov and also in the contributions by Runkel, Gaberdiel
and Wood and by Semikhatov in this volume.

In the workshop, there were 21 invited talks by mathematicians and physicists
from Argentina, China, Croatia, France, Germany, Japan, Russia and USA. Some of
the invited talks were given by young researchers. The participants benefited a lot
from communicating results between the various disciplines and from the attempt
to understand them in the framework of conformal field theories and tensor cate-
gories. These attempts gave rise to further questions during and after the talks, and,
maybe even more importantly, also resulted in numerous and lively private discus-
sions among the participants.

The workshop also had important training impact on students. A number of un-
dergraduate and beginning graduate students in the Enhanced Program for Graduate
Study in Beijing International Center for Mathematical Research participated in the
workshop. They benefited greatly from the talks, especially the five overview talks,
and from discussions with active researchers in the workshop.

The present volume is a collection of seven papers that are either based on the
talks presented in the workshop or are extensions of the material presented in the
talks in the workshop. We believe that the papers in this volume will be useful to
everyone who is interested in conformal field theories, tensor categories and related
topics. We hope that these papers will also inspire more research activities in these
directions.

We are very grateful to Beijing International Center for Mathematical Research
and the National Science Foundation in USA for the funding and support of the
workshop. We thank the staff at Beijing International Center for Mathematical Re-
search for their help during the workshop. We thank all the participants, the speakers
and, especially, the authors whose papers are included in this volume and the anony-
mous referees for their careful reviews of the papers included in this volume.

Chengming Bai
Jürgen Fuchs

Yi-Zhi Huang
Liang Kong
Ingo Runkel

Christoph Schweigert

Tianjin, People’s Republic of China
Karlstad, Sweden
Piscataway, NJ, USA
Beijing, People’s Republic of China
Hamburg, Germany
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Dražen Adamović and Antun Milas

C1-Cofiniteness and Fusion Products for Vertex Operator Algebras . . 271
Masahiko Miyamoto

ix



From Hopf Algebras to Tensor Categories

N. Andruskiewitsch, I. Angiono, A. García Iglesias, B. Torrecillas, and C. Vay

Abstract This is a survey on spherical Hopf algebras. We give criteria to decide
when a Hopf algebra is spherical and collect examples. We discuss tilting modules as
a mean to obtain a fusion subcategory of the non-degenerate quotient of the category
of representations of a suitable Hopf algebra.

Mathematics Subject Classification (2000) 16W30

1 Introduction

It follows from its very definition that the category RepH of finite-dimensional
representations of a Hopf algebra H is a tensor category. There is a less obvious
way to go from Hopf algebras with some extra structure (called spherical Hopf
algebras) to tensor categories. Spherical Hopf algebras and the procedure to obtain
a tensor category from them were introduced by Barrett and Westbury [19, 20],
inspired by previous work by Reshetikhin and Turaev [69, 70], in turn motivated to
give a mathematical foundation to the work of Witten [76].

A spherical Hopf algebra has by definition a group-like element that implements
the square of the antipode (called a pivot) and satisfies the left-right trace symmetry
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2 N. Andruskiewitsch et al.

condition (3.2). The classification (or even the characterization) of spherical Hopf
algebras is far from being understood, but there are two classes to start with. Let us
first observe that semisimple spherical Hopf algebras are excluded from our consid-
erations, since the tensor categories arising from the procedure are identical to the
categories of representations. Another remark: any Hopf algebra is embedded in a
pivotal one, so that the trace condition (3.2) is really the crucial point. Now the two
classes we mean are

• Hopf algebras with involutory pivot, or what is more or less the same, with
S4 = id. Here the trace condition follows for free, and the quantum dimensions
will be (positive and negative) integers.

• Ribbon Hopf algebras [69, 70].

It is easy to characterize pointed or copointed Hopf algebras with S4 = id; so
we have many examples of (pointed or copointed) spherical Hopf algebras with
involutory pivot, most of them not even quasi-triangular, see Sect. 3.6. On the other
hand, any quasitriangular Hopf algebra is embedded in a ribbon one [69]; combined
with the construction of the Drinfeld double, we see that any finite-dimensional
Hopf algebra gives rise to a ribbon one. So, we have plenty of examples of spherical
Hopf algebras, although of a rather special type.

The procedure to get a tensor category from a spherical Hopf algebra H consists
in taking a suitable quotient RepH of the category RepH . This appears in [20] but
similar ideas can be found elsewhere, see e.g. [35, 55]. The resulting spherical cat-
egories are semisimple but seldom have a finite number of irreducibles, that is, they
are seldom fusion categories in the sense of [32]. We are interested in describing
fusion tensor subcategories of RepH for suitable H . This turns out to be a tricky
problem. First, if the pivot is involutive, then the fusion subcategories of RepH are
integral, see Proposition 3.12. The only way we know is through tilting modules;
but it seems to us that there is no general method, just a clever recipe that works.
This procedure has a significant outcome in the case of quantum groups at roots
of one, where the celebrated Verlinde categories are obtained [3]; see also [72] for
a self-contained exposition and [62] for similar results in the setting of algebraic
groups over fields of positive characteristic. One should also mention that the Ver-
linde categories can be also constructed from vertex operator algebras related to
affine Kac-moody algebras, see [18, 45, 46, 50–53] and references therein; the com-
parison of these two approaches is highly non-trivial. Another approach, at least for
SL(n), was proposed in [40] via face algebras (a notion predecessor of weak Hopf
algebras).

The paper is organized as follows. Section 2 contains some information about
the structure of Hopf algebras and notation used later in the paper. Section 3 is de-
voted to spherical Hopf algebras. In Sect. 4 we discuss tilting modules and how this
recipe would work for some finite-dimensional pointed Hopf algebras associated to
Nichols algebras of diagonal type, that might be thought of as generalizations of the
small quantum groups of Lusztig.
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2 Preliminaries

2.1 Notations

Let k be an algebraically closed field of characteristic 0 and k
× its multiplicative

group of units. All vector spaces, algebras, unadorned Hom and ⊗ are over k. By
convention, N= {1,2, . . . } and N0 =N∪ {0}.

Let G be a finite group. We denote by Z(G) the center of G and by IrrG the set
of isomorphism classes of irreducible representations of G. If g ∈G, we denote by
CG(g) the centralizer of g in G. The conjugacy class of g is denoted by Og or by
OG
g , when emphasis on the group is needed. The group algebra of G is denoted kG,

while its dual is kG; recall that this is the algebra of functions on G.
Let A be an algebra. We denote by Z(A) the center of A. The category of A-

modules is denoted A- Mod; the full subcategory of finite-dimensional objects is
denotedA- mod. The set of isomorphism classes of irreducible1 objects in an abelian
category C is denoted IrrC; we use the abbreviation IrrA instead of IrrA- mod.

2.2 Tensor Categories

We refer to [18, 31–33, 60, 64] for basic results and terminology on tensor and
monoidal categories. A monoidal category is one with tensor product and unit, de-
noted 1; thus End(1) is a monoid. A monoidal category is rigid when it has right
and left dualities. In this article, we understand by tensor category a monoidal
rigid abelian k-linear category, with End(1) � k. A particular important class of
tensor categories is that of fusion categories, that is semisimple tensor categories
with finite set of isomorphism classes of simple objects, that includes the unit ob-
ject, and finite-dimensional spaces of morphisms. Another important class of ten-
sor categories is that of braided tensor categories, i.e. those with a commutativity
constraint cV,W : V ⊗W → W ⊗ V for every objects V and W . A braided vec-
tor space is a pair (V , c) where V is a vector space and c ∈ GL(V ⊗ V ) satisfies
(c⊗ id)(id⊗ c)(c⊗ id)= (id⊗ c)(c⊗ id)(id⊗ c); this notion is closely related to
that of braided tensor category.

2.3 Hopf Algebras

We use standard notation for Hopf algebras (always assumed with bijective an-
tipode); �, ε, S , denote respectively the comultiplication, the counit, and the an-
tipode. For the first, we use the Heyneman-Sweedler notation �(x) = x(1) ⊗ x(2).
The tensor category of finite-dimensional representations of a Hopf algebra H is

1That is, minimal, see p. 10.
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denoted RepH instead of H - mod, to stress the tensor structure. There are two du-
ality endo-functors of RepH composing the transpose of the action with either the
antipode or its inverse: if M ∈ RepH , then M∗ =Hom(M,k)= ∗M , with actions

〈h · f,m〉 = 〈
f,S(h) ·m〉

, 〈h · g,m〉 = 〈
g,S−1(h) ·m〉

,

for h ∈H , f ∈M∗, g ∈ ∗M , m ∈M .
The tensor category of finite-dimensional corepresentations of a Hopf algebra

H , i.e. right comodules, is denoted CorepH . The coaction map of V ∈ CorepH is
denoted ρ = ρV : V → V ⊗H ; in Heyneman-Sweedler notation, ρ(v)= v(0)⊗v(1),
v ∈ V . Also, the coaction map of a left comodule W is denoted δ = δW : W →
W ⊗H ; that is, δ(w)=w(−1) ⊗w(0), w ∈W .

A Yetter-Drinfeld module V over a Hopf algebra H is simultaneously a left H -
module and a left H -comodule, subject to the compatibility condition δ(h · v) =
h(1)v(−1)S(h(3)) ⊗ h(2) · v(0) for v ∈ V , h ∈ H . The category H

HYD of Yetter-
Drinfeld modules over H is a braided tensor category with braiding c(v ⊗ w) =
v(−1) ·w ⊗ v(0), see e.g. [8, 63]; when dimH <∞, HHYD coincides with the cate-
gory of representations of the Drinfeld double D(H).

Let H be a Hopf algebra. A basic list of H -invariants is

• The group G(H) of group-like elements of H ,
• the coradical H0 = largest cosemisimple subcoalgebra of H ,
• the coradical filtration of H .

Assume that H0 is a Hopf subalgebra of H . In this case, another fundamental
invariant of H is the infinitesimal braiding, a Yetter-Drinfeld module V over H0,
see [8]. We shall consider two particular cases:

• The Hopf algebra H is pointed if H0 = kG(H).
• The Hopf algebra H is copointed if H0 = k

G for a finite group G.

Recall that x ∈H is (g,1) skew-primitive when �(x)= x ⊗ 1+ g ⊗ x; neces-
sarily, g ∈G(H). If H is generated as an algebra by group-like and skew-primitive
elements, then it is pointed.

We shall need the description of Yetter-Drinfeld modules over kG, G a finite
group; these areG-graded vector spacesM =⊕

g∈GMg provided with aG-module

structure such that g ·Mt =Mgtg−1 for any g, t ∈G. The category kG
kG

YD of Yetter-
Drinfeld modules overG is semisimple and its irreducible objects are parameterized
by pairs (O, ρ), where O is a conjugacy class of G and ρ ∈ IrrCG(g), g ∈O fixed.
We describe the corresponding irreducible Yetter-Drinfeld module M(O, ρ). Let
g1 = g, . . . , gm be a numeration of O and let xi ∈G such that xigx

−1
i = gi for all

1≤ i ≤m. Then

M(O, ρ)= IndGCG(g) V =
⊕

1≤i≤m
xi ⊗ V.

Let xiv := xi ⊗ v ∈ M(O, ρ), 1 ≤ i ≤ m, v ∈ V . The Yetter-Drinfeld module
M(O, ρ) is a braided vector space with braiding given by

c(xiv⊗ xjw)= gi · (xjw)⊗ xiv = xhρ(γ )(w)⊗ xiv (2.1)
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for any 1≤ i, j ≤m, v,w ∈ V , where gixj = xhγ for unique h, 1≤ h≤m, and γ ∈
CG(g). Now the categories kG

kGYD and k
G

kG
YD are tensor equivalent, so that a similar

description of the objects of the latter holds, see e.g. [9], or more generally [6, 66].
The following notion is appropriate to describe all braided vector spaces aris-

ing as Yetter-Drinfeld modules over some finite abelian group. A braided vector
space (V , c) is of diagonal type if there exist qij ∈ k

× and a basis {xi}i∈I of V
such that c(xi ⊗ xj ) = qij xj ⊗ xi , for each pair i, j ∈ I . In such case, we say that
i, j ∈ I are connected if there exist ik ∈ I , k = 0,1, . . . , n, such that i0 = i, in = j ,
and qik−1,ik qik,ik−1 �= 1, 1 ≤ k ≤ n. It establishes an equivalence relation on I . The
equivalence classes are called connected components, and V is connected if it has a
unique component.

When H = kΓ , where Γ is a finite abelian group, each V ∈ H
HYD is a braided

vector space of diagonal type. Indeed, V =⊕
g∈Γ,χ∈Γ̂ V

χ
g , where Vg = {v ∈ V |

δ(v) = g ⊗ v}, V χ = {v ∈ V | g · v = χ(g)v for all g ∈ Γ }, V χ
g = V χ ∩ Vg . Note

that c(x ⊗ y)= χ(g)y ⊗ x, for each x ∈ Vg , g ∈ Γ , y ∈ V χ , χ ∈ Γ̂ . On the other
hand, we can realize every braided vector space of diagonal type as a Yetter-Drinfeld
module over the group algebra of an appropriate abelian group.

2.4 Nichols Algebras

Let H be a Hopf algebra. We shall say braided Hopf algebra for a Hopf algebra
in the braided tensor category H

HYD. Given V ∈ H
HYD, the Nichols algebra of V

is the braided graded Hopf algebra B(V ) =⊕
n≥0 Bn(V ) satisfying the following

conditions:

• B0(V )� k, B1(V )� V as Yetter-Drinfeld modules over H ;
• B1(V )=P(B(V )), the set of primitives elements of B(V );
• B(V ) is generated as an algebra by B1(V ).

The Nichols algebra of V exists and is unique up to isomorphism. We sketch a
way to construct B(V ) and prove its unicity, see [8]. Note that the tensor algebra
T (V ) admits a unique structure of graded braided Hopf algebra in H

HYD such that
V ⊆ P(V ). Consider the class S of all the homogeneous two-sided Hopf ideals
I ⊆ T (V ) such that I is generated by homogeneous elements of degree ≥ 2 and is
a Yetter-Drinfeld submodule of T (V ). Then B(V ) is the quotient of T (V ) by the
maximal element I (V ) of S. Thus, the canonical projection π : T (V )→ B(V ) is a
Hopf algebra surjection in H

HYD.
Braided vector spaces of diagonal type with finite-dimensional Nichols algebra

were classified in [41]; the explicit defining relations were given in [15], using the
results of [14]. Presently we understand that the list of braidings of diagonal type
with finite-dimensional Nichols algebra given in [41] is divided into three parts:

(1) Standard type [13], comprising Cartan type [7];
(2) Super type [12];
(3) Unidentified type [16].
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3 Spherical Hopf Algebras

3.1 Spherical Hopf Algebras

The notion of spherical Hopf algebra was introduced in [20]: this is a pair (H,ω),
where H is a Hopf algebra and ω ∈G(H) such that

S2(x)= ωxω−1, x ∈H, (3.1)

trV (ϑω)= trV
(
ϑω−1), ϑ ∈ EndH (V ), (3.2)

for all V ∈ RepH . We say that ω ∈ G(H) is a pivot when it satisfies (3.1); pairs
(H,ω) with ω a pivot are called pivotal Hopf algebras. The pivot is not unique but
it is determined up to multiplication by an element in the group G(H) ∩ Z(H).
A spherical element is a pivot that fulfills (3.2).

The implementation of the square of the antipode by conjugation by a group-
like, condition (3.1), is easy to verify. For instance, ω should belong to the center of
G(H); thus, if this group is centerless, then (3.1) does not hold in H . Further, the
failure of (3.1) is not difficult to remedy by adjoining a group-like element (Sect. 2 in
[73]). Namely, given a Hopf algebra H , consider a cyclic group Γ of order ordS2

with a generator g; let g act on H as S2. Then the corresponding smash product
E(H) :=H#kΓ is a Hopf algebra where (3.1) holds.2

Condition (3.2) is less apparent. If H is a finite-dimensional Hopf algebra and
ω ∈H a pivot, then (3.2) holds in the following instances:

• ω is an involution.
• There exists a Hopf subalgebraK ofH such that ω ∈K and (K,ω) is spherical—

since EndH (V )⊂ EndK(V ).
• H is ribbon, see Sect. 3.7.
• All finite-dimensional H -modules are naturally self-dual.

Proof By hypothesis, there exists a natural isomorphism F : id→∗. Let V ∈ RepH
and ϑ ∈ EndH (V ). Then

tr(ϑω)=
∑

i

〈αi,ϑωvi〉 =
∑

i

〈
ϑ∗αi,ωvi

〉=
∑

i

〈
FV ϑF

−1
V αi,ωvi

〉

=
∑

i

〈
FV ϑω

−1F−1
V αi, vi

〉= tr
(
FV ϑω

−1F−1
V

)= tr
(
ϑω−1).

Here {vi} and {αi} are dual basis of V and V ∗ respectively. �

Proposition 3.1 A pivotal Hopf algebra (H,ω) is spherical if and only if (3.2)
holds for all S ∈ IrrH .

2If H has finite dimension n ∈N, then the order of S2 is finite; in fact, it divides 2n, by Radford’s
formula on S4 and the Nichols-Zöller Theorem.
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Proof The Proposition follows from the following two claims.

Claim 1 If (3.2) holds for M1,M2 ∈ RepH , then it holds for M1 ⊕M2.

Indeed, let h ∈ EndH (M1 ⊕M2). Let πj :M →Mj , ιi :Mi →M be the pro-
jection and the inclusion, for 1 ≤ i, j ≤ 2. Then h =∑

1≤i,j≤2 hij , where hij =
πi ◦ h ◦ ιj ∈HomH (Mj ,Mi). In particular, hijω= (hω)ij as linear maps. Now, we
have that trM(h)= trM1(h11)+ trM2(h22) and thus

trM(hω)= trM1(hω)11 + trM2(hω)22 = trM1(h11ω)+ trM2(h22ω)

= trM1

(
h11ω

−1)+ trM2

(
h22ω

−1)= trM1

(
hω−1)

11 + trM2

(
hω−1)

22

= trM
(
hω−1).

Claim 2 If (3.2) holds for every semisimple H -module, then H is spherical.

Let M ∈ RepH and let M0 ⊂M1 ⊂ · · · ⊂Mk =M be the Loewy filtration of
M , that is M0 = SocM , Mi+1/Mi � Soc(M/Mi), i = 0, . . . , j − 1. In particular,
Mi+1/Mi is semisimple. We prove the claim by induction on the Loewy length k
of M . The case k = 0 is the hypothesis. Assume k > 0; set S = SocM and consider
the exact sequence 0→ S→M →M/S→ 0. Hence the Loewy length of M̃ =
M/S is k − 1 and thus (3.2) holds for it. Also, (3.2) holds for S by hypothesis.
Let f ∈ EndH (M), then f (S) ⊆ S and thus f induces f1 = f|S ∈ EndH (S) by
restriction and factorizes through f2 ∈ EndH (M̃). Therefore, we can choose a basis
of S and complete it to a basis of M in such a way that f in this new basis is
represented by [f ] = [ [f1] ∗

0 [f2]
]
. Also, as ω preserves S and f is an H -morphism, it

follows that [fω] = [ [f1ω] ∗
0 [f2ω]

]
and thus trM(fω)= trM(fω−1). �

Example 3.2 Let H be a basic Hopf algebra, i.e. all finite-dimensional simple mod-
ules have dimension 1; when H itself is finite-dimensional, this amounts to the dual
of H being pointed. If ω ∈ G(H) is a pivot, then H is spherical if and only if
χ(ω) ∈ {±1} for all χ ∈Alg(H,k). Assume that H is finite-dimensional; then H is
spherical if and only if ω is involutive. For, ω−ω−1 ∈⋂

χ∈Alg(H,k) Kerχ = RadH ,
and RadH ∩ k[ω] = 0.

3.2 Spherical Categories

A monoidal rigid category C is pivotal when X∗∗ is monoidally isomorphic to X
[34]; this implies that the left and right dualities coincide. For instance, if H is a
Hopf algebra and ω ∈ G(H) is a pivot, then RepH is pivotal (Proposition 3.6 in
[20]). In a pivotal category C, there are left and right traces trL, trR : End(X)→
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End(1), for any X ∈ C. If C = RepH and V ∈ RepH , then these traces are defined
by

trL(ϑ)= trV (ϑω), trR(ϑ)= trV
(
ϑω−1), ϑ ∈ EndH (V ). (3.3)

A spherical category is a pivotal one where the left and right traces coincide. Thus,
RepH is a spherical category, whenever H is a spherical Hopf algebra.

Remark 3.3 If D is a rigid monoidal (full) subcategory of a spherical category C,
then D is also spherical.

3.3 Quantum Dimensions

The quantum dimension of an object X in a spherical category C is given by
qdimV := trL(idX). In particular, if H is a spherical Hopf algebra, then

qdimM = trM(ω)= trM
(
ω−1), M ∈ RepH. (3.4)

3.3.1 Some Properties of Quantum Dimension

If C is a spherical tensor category, then End(1)= k, and the function V �→ qdimV

is a character of the Grothendieck ring of C. In fact, this map is additive on exact
sequences, as in the proof of Proposition 3.1; also

qdimV ⊗W = qdimV qdimW, V,W ∈ C. (3.5)

In consequence, the quantum dimension of any object in a finite spherical tensor
category C is an algebraic integer in k, see Corollary 1.38.6 in [33].

3.3.2 Computing the Quantum Dimension

Let H be a Hopf algebra. Given L ∈ IrrH , M ∈ RepH , we set (M : L) = multi-
plicity of L in M (i.e. the number of times that L appears as a Jordan-Hölder factor
of M). Assume that (H,ω) is spherical. Let M ∈ RepH . Then

qdimM =
∑

L∈IrrH

(M : L)qdimL. (3.6)

Here is a way to compute the quantum dimension of M : consider the decompo-
sition M =⊕

ρ∈IrrG(H)Mρ into isotypical components of the restriction of M to
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G(H). Since ω ∈ Z(G(H)), it acts by a scalar zρ on the G(H)-module affording
ρ ∈ IrrG(H). Hence

qdimM =
∑

ρ∈IrrG(H)

zρ dimMρ. (3.7)

See [24, 25] for a Verlinde formula and other information on the computation of the
quantum dimension in terms of the Grothendieck ring.

3.3.3 Projective Objects Have Null Quantum Dimension

If H is a non-semisimple spherical Hopf algebra, then qdimM = 0 for any M ∈
RepH projective (Proposition 6.10 in [19]). More generally, the following result
appears in the proofs of Theorem 2.16 in [31], Theorem 1.53.1 in [33].

Proposition 3.4 Let C be a non-semisimple pivotal tensor category. Then qdimP =
0 for any projective object P .

3.4 The Non-degenerate Quotient

Let C be an additive k-linear spherical category with End(1)� k. For any two ob-
jects X, Y in C there is a bilinear pairing

Θ :HomC(X,Y )×HomC(Y,X)→ k, Θ(fg)= trL(fg)= trR(gf );
C is non-degenerate ifΘ is, for anyX, Y . By Theorem 2.9 in [20], see also [74], any
additive spherical category C gives rise a factor category C, with the same objects3

as C and morphisms HomC(X,Y ) :=HomC(X,Y )/J (X,Y ), X,Y ∈ C, where

J (X,Y )= {
f ∈HomC(X,Y ) : trL(fg)= 0,∀g ∈HomC(Y,X)

}
. (3.8)

The category C is an additive non-degenerate spherical category, but it is not neces-
sarily abelian, even if C is abelian. Clearly, the quantum dimensions in RepH and
RepH are the same. See [55] for a general formalism of tensor ideals, that encom-
passes the construction above.

We now give more information on RepH following Proposition 3.8 in [20]. Let
us first point out some precisions on the terminology used in the literature on addi-
tive categories, see e.g. [39] and references therein. We shall stick to this terminol-
ogy in what follows. Let C be an additive k-linear category, where k is an arbitrary
field.

3This is a bit misleading, as non-isomorphic objects in C may became isomorphic in C.
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• C is semisimple if the algebras End(X) are semisimple for all X ∈ C.
• An object X is minimal if any monomorphism Y → X is either 0 or an isomor-

phism; hence End(X) is a division algebra over k.
• C is completely reducible if every object is a direct sum of minimal ones.

Beware that in more recent literature in topology (where it is assumed that k = k),
an object S is said to be simple when End(S)� k; and ‘C is semisimple’ means that
every object in C is a direct sum of simple ones. For instance, if C = A- mod, A an
algebra, then a minimal object in C is just a simple A-module; then End(S)∼= k by
the Schur Lemma. But it is well-known that the converse is not true.

Example 3.5 Let H = k〈x,g|x2, g2 − 1, gx + xg〉 be the Sweedler Hopf algebra.
H has two simple modules, both one dimensional, namely the trivial V + and V −,
where g acts as −1. Consider the non-trivial extension V ± ∈ Ext1H (V

−,V +), that
is V ± = kv⊕ kw with action

g · v = v, g ·w =−w, x · v =w, x ·w = 0.

Then V ± is not simple and EndH (V ±)∼= k. It is easy to see that the indecomposable
H -modules are V +, V −, V ± and V ∓ := (V ±)∗; hence RepH � RepZ/2 by Step 2
of the proof of Theorem 3.7 below. Also, notice that in RepH it is not true that all
endomorphism algebras are semisimple (just take the regular representation); and,
related to this, that HomH (V

∓,V ±) �= 0.

However, the converse above is true when the category is semisimple.

Remark 3.6 (Lemmas 1.1, 1.3 in [39]) Let C be a semisimple additive k-linear cat-
egory, where k is an arbitrary field.

(a) If α : V →W is not zero, then there exists β,γ :W → V such that βα �= 0,
αγ �= 0. If HomC(V ,W)= 0, then HomC(W,V )= 0.

(b) If V ∈ C and End(V ) is a division ring, then V is minimal.
(c) If V,W ∈ C are minimal and non-isomorphic, then HomC(V ,W)= 0.

Proof

(a) Assume that HomC(W,V )α = 0. Set U = V ⊕W ; then EndC Uα is a nilpotent
left ideal of EndC U , hence it is 0.

(b) Let W �= 0 and f ∈ Hom(W,V ) be a monomorphism. Since f �= 0, Hom(V ,
W) �= 0 by (a). Since End(V ) is a division ring, the map f ◦− :Hom(V ,W)→
End(V ) is surjective. Therefore there exists g ∈Hom(V ,W) such that f ◦ g =
idV . On the other hand, the map End(W)→ Hom(W,V ), h̃ �→ f ◦ h̃ is injec-
tive. Hence g ◦ f = idW since f ◦ (g ◦ f )= f ◦ idW . Thus W � V .

(c) follows from (a) at once. �

If H is a spherical Hopf algebra, then we denote by Indecq H the set of iso-
morphism classes of indecomposable finite-dimensional H -modules with non-zero
quantum dimension.
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Theorem 3.7 (Proposition 3.8 in [20]) LetH be a spherical Hopf algebra with pivot
ω. Then the non-degenerate quotient RepH is a completely reducible spherical
tensor category, and Irr RepH is in bijective correspondence with Indecq H .

By Remark 3.6, ‘completely reducible’ becomes what is called semisimple in the
recent literature.

Proof The crucial step is to show that RepH is semisimple.

Step 1 (Proposition 3.7 in [20]). The algebra EndRepH (X) is semisimple for any
X in RepH .

Indeed, the Jacobson radical J of EndH (X) is contained in J (X,X). For, if
ϑ ∈ J , then ϑω is nilpotent, hence trL(ϑ)= trV (ϑω)= 0.

As a consequence of Step 1 and Remark 3.6, X ∈ RepH is minimal if and only
if EndRepH (X) � k, that is if and only if it is simple. Also, HomRepH (S,T ) = 0,
for S,T ∈ RepH simple non-isomorphic.

Step 2. V is a simple object in RepH iff there exists W ∈ RepH indecomposable
with qdimW �= 0 which is isomorphic to V in RepH .

Assume that W ∈ RepH is indecomposable. If f ∈ EndH (W), then f is either
bijective or nilpotent by the Fitting Lemma. If also qdimW �= 0, then EndRepH (W)

is a finite dimensional division algebra over k, necessarily isomorphic to k. Now,
assume that V is a simple object in RepH . Let π ∈ EndH (V ) be a lifting of idV =
1 ∈ EndRepH (V ) � k. We can choose π to be a primitive idempotent. Then the
image W of π is indecomposable and π|W induces an isomorphism between W

and V in RepH . Again by the Fitting Lemma, EndH (W)� kπ|W ⊕Rad EndH (W).
Hence qdimW �= 0 since π is a lifting of idV ∈ EndRepH (V ).

Step 3. Let V,W ∈ RepH indecomposable with qdimV �= 0, qdimW �= 0, which
are isomorphic in RepH . Then V �W in RepH .

Let f ∈HomH (V,W) and g ∈HomH (W,V ) such that gf = idV in RepH ; that
is

trV
(
ϑ(gf − id)ω

)= 0 for every ϑ ∈ EndH (V ). (3.9)

Since V is indecomposable, gf is invertible in End(V ), or otherwise (3.9) would fail
for ϑ = id. Thus g is surjective and f is injective. But W is also indecomposable,
hence f is surjective and g is injective, and both are isomorphisms.

To finish the proof of the statement about the irreducibles, observe that an in-
decomposable U ∈ RepH with qdimU = 0 satisfies U � 0 in RepH . Since any
M ∈ RepH is a direct sum of indecomposables, we see that M is isomorphic in
RepH to a direct sum of indecomposables with non-zero quantum dimension.

Finally observe that the additive k-linear category RepH , being isomorphic to a
direct sum of copies of Veck, is abelian. �

Here is a consequence of the Theorem: let ι : V ↪→W be a proper inclusion of
indecomposable H -modules with qdimV �= 0, qdimW �= 0. Then ι ∈ J (V ,W).
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Remark 3.8 From Theorem 3.7 we see the relation between the constructions of
[20] and [35]. For, let C = RepH and let C0, resp. C⊥, be the full subcategory
whose objects are direct sums of indecomposables with quantum dimension �= 0,
resp. 0. Then RepH is the quotient of C by C⊥ as described in Sect. 1 in [35].

Even when H is finite-dimensional, Irr RepH is not necessarily finite. It is then
natural to look at suitable subcategories of RepH that give rise to finite tensor sub-
categories of RepH . A possibility is tilting modules, that proved to be very fruitful
in the case of quantum groups at roots of one. We shall discuss this matter in Sect. 4.

3.5 Pointed or Copointed Pivotal Hopf Algebras

3.5.1 Pivots in the Pointed Case

Let H be a pointed Hopf algebra and set G =G(H). We assume that H is gener-
ated by group-like and skew-primitive elements. For H finite-dimensional, it was
conjectured that this is always the case (Conjecture 1.4 in [7]). So far this is true
in all known cases, see [15, 17] and references therein. As explained in Sect. 2.3,
there exist g1, . . . , gθ ∈G and ρi ∈ IrrCG(g), 1≤ i ≤ θ , such that the infinitesimal
braiding of H is

M(Og1, ρ1)⊕ · · · ⊕M(Ogθ , ρθ ).

Lemma 3.9 Let ω ∈G. Then the following are equivalent:

(a) ω is a pivot.
(b) ω ∈ Z(G) and ρi(ω)= ρi(gi)−1, 1≤ i ≤ θ .

Proof There exist x1, . . . , xθ ∈ H such that �(xi) = xi ⊗ 1 + gi ⊗ xi , 1 ≤ i ≤ θ ,
and H is generated by x1, . . . , xθ and G as an algebra. Now S2(xi) = g−1

i xigi =
ρi(g

−1
i )xi . �

3.5.2 Pivots in the Copointed Case

Let G be a finite group and δg be the characteristic function of the subset {g} of G.
If M ∈ kGM, then M =⊕

g∈SuppM M[g] where

M[g] := δg ·M and SuppM := {
g ∈G :M[g] �= 0

}
.

Lemma 3.10 Let H be a finite-dimensional copointed Hopf algebra over k
G and

ω=∑
g∈Gω(g)δg ∈G(kG). The following are equivalent:

(a) ω is a pivot.
(b) S2(x)= ω(g)x for all x ∈H [g], g ∈G.
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Proof Consider H as a k
G-module via the adjoint action; then δtx = xδg−1t for

x ∈H [g], g, t ∈G (Lemma 3.1(b) in [9]). Hence ωxω−1 = ω(g)x. �

3.6 Spherical Hopf Algebras with Involutory Pivot

There are many examples of Hopf algebras with involutory pivot.

3.6.1 The Pointed Abelian Case

Let H be a finite-dimensional pointed Hopf algebra with G(H) abelian. Then its
infinitesimal braiding V is a braided vector space of diagonal type with matrix
(qij )1≤i,j≤θ , θ = dimV . Assume that qii = −1, 1 ≤ i ≤ θ . The list of all braided
vector spaces with this property and such that the associated Nichols algebra is
finite-dimensional can be easily extracted from the main result of [41]. We apply
Lemma 3.9 becauseH is generated by group-like and skew-primitive elements [15].
Hence, if V belongs to this list, then H is a spherical Hopf algebra with involutory
pivot, eventually adjoining a group-like if necessary. The argument also works when
G(H) is not abelian but the infinitesimal braiding is a direct sum of one-dimensional
Yetter-Drinfeld modules (one often says that the infinitesimal braiding comes from
the abelian case).

3.6.2 The Pointed Nonabelian Case

Let H be a finite-dimensional pointed Hopf algebra with G(H) not abelian and
such that the infinitesimal braiding does not come from the abelian case. In all the
examples of such infinitesimal braidings that are known,4 we may apply Lemma 3.9
because H is generated by group-like and skew-primitive elements. Also, in all
examples except one in [44], the scalar in Lemma 3.9(b) is−1. ThusH is a spherical
Hopf algebra with involutory pivot, eventually adjoining a group-like if necessary.

3.6.3 The Copointed Case

Let H be a finite-dimensional copointed Hopf algebra over kG, with G not abelian.
Lemma 3.10 makes it easy to check whetherH has an involutive pivot. For instance,
the Hopf algebras A[a], for a ∈A3, introduced in [9], have an involutory pivot. These
Hopf algebras are liftings of B(V3)#kS3 , so they have dimension 72; but they are not
quasi-triangular [9].

4The list of all known examples is in http://mate.dm.uba.ar/~matiasg/zoo.html, see also Table 1 in
[37], except for one example discovered later (Proposition 36 in [44]).

http://mate.dm.uba.ar/~matiasg/zoo.html
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Also, Irr RepA[0] is infinite. Namely, A[0] � B(V3)#kS3 and for λ ∈ k we define
the A[0]-module Mλ = 〈mg : e �= g ∈ S3〉 by

δh ·mg = δh(g)mg and x(ij) ·mg =
{

0 if sgng =−1,

λ(ij),gm(ij)g if sgng = 1,

where λ(ij),g = 1 except to λ(12),(123) = λ. Then M ∈ Indecq A[0] with qdimMλ =
−1 for all λ ∈ k and Mλ � Mμ iff λ = μ. Analogously, we can define Nλ ∈
Indecq A[0] with basis 〈ng : (12) �= g ∈ S3〉, qdimNλ = 1 and which are mutually
not isomorphic.

Remark 3.11 The dual of A[0] is B(V3)#kS3, which is not pivotal because S3 is
centerless. Compare with the main result of [67], where it is shown that the dual of
a semisimple spherical Hopf algebra is again spherical. In fact, the dual of A[a] is
not pivotal for any a ∈A3. If a is generic, then (A[a])∗ has no non-trivial group-likes
(Theorem 1 in [10]). If a is sub-generic, then the unique non-trivial group-like ζ(12)

of (A[a])∗ is not a pivot, see Lemma 8 in [10] for notations. Namely, if g �= (12), e,
then

ζ(12) ⇀ δg ↼ ζ(12) =
∑

t,s∈S3

δs
(
(12)

)
δs−1t δt−1g

(
(12)

)= δ(12)g(12) �= S2(δg).

3.6.4 Fusion subcategories of RepH , Involutory Pivot

Let H be a spherical Hopf algebra with involutory pivot ω. Then

• The quantum dimensions are integers.
• If χ is a representation of dimension one, then qdimkχ = χ(ω).
• IfH is not semisimple, then at least one module has negative quantum dimension.
• Assume that there exists L ∈ IrrH such that qdimL′ > 0 for all L′ ∈ IrrH ,
L′ �= L. Then qdimL< 0.

Proposition 3.12 Let C be a fusion subcategory of RepH , where H is a spheri-
cal Hopf algebra with involutory pivot. Then there exists a semisimple quasi-Hopf
algebra K such that C � RepK as fusion categories.

Proof The quantum dimensions are integers, because the pivot is involutory, and
positive by Corollary 2.10 in [32]; here we use that C is spherical, see Remark 3.3.
Then Theorem 8.33 in [32] applies. Indeed, the Perron-Frobenius and quantum di-
mensions here coincide, see e.g. the proof of Proposition 8.23 in [32]. �

We are inclined to believe, because of some computations in examples, that the
quasi-Hopf algebra K in the statement is actually a Hopf algebra quotient of H .
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3.7 Ribbon Hopf Algebras

This is a distinguished class of spherical Hopf algebras. Let (H,R) be a quasi-
triangular Hopf algebra [30]. We denote the universal matrix as R=R(1) ⊗R(2).
The Drinfeld element is

u= S
(
R(2))R(1). (3.10)

Let Q=R21R. The Drinfeld element is invertible and satisfies

�(u)=Q−1(u⊗ u)= (u⊗ u)Q−1, u−1 =R(2)S2(R(1)), (3.11)

g := uS(u)−1 = S(u)−1u ∈G(H), uS(u) ∈Z(H), (3.12)

S2(h)= uhu−1, S4(h)= ghg−1, (3.13)

for any h ∈H .

Definition 3.13 ([69]) A quasi-triangular Hopf algebra (H,R) is ribbon if there
exists v ∈ Z(H), called the ribbon element, such that

v2 = uS(u), S(v)= v, �(v)=Q−1(v⊗ v). (3.14)

The ribbon element is not unique but it is determined up to multiplication by an
element in {g ∈G(H)∩Z(H) : g2 = 1}.

Let H be a ribbon Hopf algebra. It follows easily that ω = uv−1 ∈ G(H) and
S2(h) = ωhω−1 for all h ∈ H ; that is, ω is a pivot. Actually, H is spherical (Ex-
ample 3.2 in [20]). In fact, the concept of quantum trace is defined in any ribbon
category using the braiding, see for example Definition XIV.4.1 in [48]. By Propo-
sition XIV.6.4 in [48], the quantum trace of RepH coincides with trL, cf. (3.3).
Moreover, Theorem XIV.4.2(c) in [48] asserts that trL = trR .

There are quasi-triangular Hopf algebras that are not ribbon, but the failure is
not difficult to remedy by adjoining a group-like element (Theorem 3.4 in [69]).
Namely, given a quasi-triangular Hopf algebra (H,R), let H̃ =H ⊕Hv, where v
is a formal element not in H . Then H̃ is a Hopf algebra with product, coproduct,
antipode and counit defined for x, x′, y, y′ ∈H by

(x + yv) · (x′ + y′v)= (
xx′ + yy′uS(u))+ (

xy′ + yx′)v, (3.15)

�(x + yv)=�(x)+�(y)Q−1(v⊗ v), (3.16)

S(x + yv)= S(x)+ S(y)v, ε(x + yv)= ε(x)+ ε(y). (3.17)

Clearly, H becomes a Hopf subalgebra of H̃ ; it can be shown then that R is a uni-
versal R-matrix for H̃ and that v is a ribbon element for (H̃ ,R). See Theorem 3.4
in [69]. We shall say that H̃ is the ribbon extension of (H,R).
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Remark 3.14 (Y. Sommerhäuser, private communication) The ribbon extension fits
into an exact sequence of Hopf algebrasH ↪→ H̃ � k[Z/2], which is cleft. Namely,
let ξ be the generator of Z/2 and define

ξ ⇀ x = S2(x), x ∈H, σ
(
ξ i ⊗ ξj )= gij , i, j ∈ {0,1}.

Then the crossed product defined by this action and cocycle together with the tensor
product of coalgebras is a Hopf algebra H#σk[Z/2], see for instance [5]. Now the
map ψ : H#σk[Z/2] → H̃ , ψ(x#ξ i) = x(S(u−1)v)i , is an isomorphism of Hopf
algebras.

In conclusion, any finite-dimensional Hopf algebra H gives rise to a ribbon Hopf
algebra, namely the ribbon extension of its Drinfeld double:

H D(H) D̃(H).

Remark 3.15 A natural question is whether the Drinfeld double itself is ribbon; this
was addressed in [49], where the following results were obtained. Let H be a finite-
dimensional Hopf algebra, g ∈G(H) and α ∈G(H ∗) be the distinguished group-
likes.5 The celebrated Radford’s formula for the fourth power of the antipode [68]
states that

S4(h)= g(α ⇀ h↼α−1)g−1, h ∈H. (3.18)

Here ⇀, ↼ are the transposes of the regular actions.

(a) (Theorem 2 in [49]) Suppose that (H,R) is quasi-triangular and that G(H) has
odd order. Then (H,R) admits a (necessarily unique) ribbon element if and
only if S2 has odd order.

(b) (Theorem 3 in [49]) (D(H),R) admits a ribbon element if and only if there
exist � ∈G(H) and β ∈G(H ∗) such that

�2 = g, β2 = α, S2(h)= �(β ⇀ h↼β−1)�−1, h ∈H. (3.19)

3.8 Cospherical Hopf Algebras

It is natural to look at the notions that insure that the category of comodules of a
Hopf algebra is pivotal or spherical. This was done in [21, 65].

Definition 3.16 A cospherical Hopf algebra is a pair (H, t), where H is a Hopf
algebra and t ∈Alg(H,k) is such that

S2(x(1))t (x(2))= t (x(1))x(2), x ∈H, (3.20)

5These control the passage from left to right integrals.
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trV
(
(idV ⊗ t)ρV ϑ

)= trV
((

idV ⊗ t−1)ρV ϑ
)
, ϑ ∈ EndH (V ), (3.21)

for all V ∈ CorepH . We say that t ∈Alg(H,k) is a copivot when it satisfies (3.20);
pairs (H, t) with t a copivot are called copivotal Hopf algebras. A cospherical ele-
ment is a copivot that fulfills (3.21). Let H be a cospherical Hopf algebra. Then the
category CorepH is spherical; in fact, the left and right traces are given by the sides
of (3.21).

The set Alg(H,k) is a subgroup of the group Hom�(H,k) of convolution-
invertible linear functionals, which in turn acts on End(H) on both sides. Hence
(3.20) can be written as S2 ∗ t = t ∗ idH or else as S2 = t ∗ idH ∗ t−1. The copivot is
not unique but it is determined up to multiplication by an element in Alg(H,k) that
centralizes idH . The antipode of a copivotal Hopf algebra is bijective, with inverse
given by S−1(x)=∑

t−1(x(1))S(x(2))t (x(3)), x ∈H .
The following statement is proved exactly as Proposition 3.1.

Proposition 3.17 A copivotal Hopf algebra (H, t) is cospherical if and only if
(3.21) holds for all simple H -comodules.

Example 3.18

(a) Assume that H is finite-dimensional. Then H is copivotal (resp., cospherical)
iff H ∗ is pivotal (resp., spherical).

(b) Any involutory Hopf algebra is cospherical with t = ε.
(c) A copivotal Hopf algebra with involutive copivot is cospherical.
(d) Condition (3.20) is multiplicative on x; also, it holds for x ∈G(H).
(e) Let H be a pointed Hopf algebra generated as an algebra by G(H) and a family

(xi)i∈I , where xi is (gi,1) skew-primitive. Assume that gixig
−1
i = qixi , with

qi ∈ k
× \ {1} for all i ∈ I . If t ∈ Alg(H,k), then t (xi)= 0, i ∈ I . Hence t is a

copivot iff t (gi)= q−1
i , for all i ∈ I .

(f) Let H be a pointed Hopf algebra as in item (3.18) and t ∈Alg(H,k) a copivot.
Then H is cospherical iff t (g) ∈ {±1} for all g ∈G(H).

(g) The notion of coribbon Hopf algebra is formally dual to the notion of ribbon
Hopf algebra, see [38, 56]. Coribbon Hopf algebras are cospherical. For in-
stance, the quantized function algebra Oq(G) of a semisimple algebraic group
is cosemisimple and coribbon, when q is not a root of 1.

We recall now the construction of universal copivotal Hopf algebras.

Definition 3.19 ([21]) Let F ∈ GLn(k). The Hopf algebra H(F) is the universal
algebra with generators (uij )1≤i,j≤n, (vij )1≤i,j≤n and relations

uvt = vtu= 1, vFutF−1 = FutF−1v = 1.

The comultiplication is determined by �(uij ) = ∑
k uik ⊗ ukj , �(vij ) =∑

k vik ⊗ vkj and the antipode by S(u) = vt , S(v) = FutF−1. The Hopf algebra
H(F) is copivotal, the copivot being tF (u)= (F−1)t and tF (v)= F .
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Let H be a Hopf algebra provided with V ∈ CorepH of dimension n such that
V ∼= V ∗∗. Then there exist a matrix F ∈ GLn(k), a coaction βV : V → V ⊗H(F)
and a Hopf algebra morphism π :H(F)→H such that (idV ⊗ π)βV = ρV .

In conclusion, we would like to explore semisimple tensor categories arising
from cospherical, not cosemisimple, Hopf algebras. The first step is the dual version
of Theorem 3.7, which is proved exactly in the same way.

Theorem 3.20 LetH be a cospherical Hopf algebra. Then the non-degenerate quo-
tient CorepH of CorepH is a completely reducible spherical tensor category, and
Irr CorepH is in bijective correspondence with the set of isomorphism classes of in-
decomposable finite-dimensional H -comodules with non-zero quantum dimension.

4 Tilting Modules

The concept of tilting modules appeared in [22] and was extended to quasi-
hereditary algebras in [71]. Observe that finite-dimensional quasi-hereditary Hopf
algebras are semisimple. Indeed, quasi-hereditary algebras have finite global di-
mension, but a finite-dimensional Hopf algebra is a Frobenius algebra, hence it
has global dimension 0 or infinite. Instead, the context where the recipe of tilting
modules works is a suitable category of modules, or comodules, of an infinite di-
mensional Hopf algebra. The relevant examples are: algebraic semisimple groups
over an algebraically closed field of positive characteristic (the representations are
comodules over the Hopf algebra of rational functions), quantum groups at roots of
one and the category O over a semisimple Lie algebra [1, 3, 28, 36, 62]. The main
features are:

• The suitable category of representations is not artinian, and the simple modules
are parameterized by dominant weights; the set of dominant weights admits a
total order that refines the usual partial order. To fit into the framework of quasi-
hereditary algebras, subcategories of modules with weights in suitable subsets are
considered; this allows to define Weyl modules �(λ), dual Weyl modules ∇(λ),
and eventually tilting modules T (λ), for λ a dominant weight. Usually these con-
structions are performed in an ad-hoc manner, not through quasi-hereditary alge-
bras, albeit those corresponding to this situation are studied in the literature under
the name of Schur algebras.

• The tensor product of two tilting modules and the dual of a tilting module are
again tilting. The later statement is trivial, the former requires a delicate proof.

• There is an alcove inside the chamber defined by the positive roots and bounded
by an affine hyperplane. If λ is in the alcove, then the simple module satisfies
L(λ) = �(λ), hence it is the tilting T (λ). The tilting modules T (λ) outside the
alcove are projective, hence have zero quantum dimension. Thus, the fusion cat-
egory looked for is spanned by the tilting modules in the alcove.
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• The fusion rules between the tilting modules is given by the celebrated Verlinde
formula [75] or a modular version, see [3, 62].

We would like to adapt these arguments to categories of representations of cer-
tain Hopf algebras H arising from finite-dimensional Nichols of diagonal type.
The Hopf algebra H would be the Drinfeld double, or a variation thereof, of the
bosonization of the corresponding Nichols algebra with a suitable abelian group.
We would like to solve the following points:

• The set of irreducible objects in RepH (or some appropriate variation) should
split as a filtered union IrrH =⋃

A∈AA; each A spans an artinian subcategory
where tilting modules TA can be computed.

• Define the category TH of tilting modules over H as the union of the various TA;
this should be a semisimple category.

• The category TH of tilting modules is stable by tensor products and duals.
• It is possible to determine which irreducible tilting modules have non-zero quan-

tum dimension; there are a finite number of them.
• The fusion rules are expressed through a variation of the Verlinde formula.

Provided that these considerations are correct, the full subcategory of RepH gen-
erated by the indecomposable tilting modules with non-zero quantum dimension, is
a fusion category. In this way, we hope to obtain new examples of non-integral fu-
sion categories.

4.1 Quasi-hereditary Algebras and Tilting Modules

Tilting modules work for our purpose because they span a completely reducible
category already in RepH . We think it is worthwhile to recall the main definitions of
the theory of (partial) tilting modules over quasi-hereditary algebras, due to Ringel
[71]. A full exposition is available in [29].

Let A be an artin algebra. Consider a family Θ = (Θ(1), . . . ,Θ(n)) of A-
modules such that

Ext1A
(
Θ(j),Θ(i)

)= 0, j ≥ i. (4.1)

We denote by F(Θ) the full subcategory of A- Mod with objects M that admit a
filtration with sub-factors in Θ . We fix a numbering (that is, a total order) of IrrA:
L(1), . . . ,L(n). We set

P(i)= projective cover of L(i),

Q(i)= injective hull of L(i),

�(i)= P(i)/U(i), where U(i)=
∑

j>i

∑

α∈Hom(P (j),P (i))

Imα,
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∇(i)=
⋂

j>i

⋂

β∈Hom(Q(i),Q(j))

kerβ,

1 ≤ i ≤ n. Let � = (�(1), . . . ,�(n)), ∇ = (∇(1), . . . ,∇(n)); these satisfy (4.1)
and then Theorem 1 in [71] applies to them.

Definition 4.1 The artin algebra A is quasi-hereditary provided that AA ∈ F(�),
and L(i) has multiplicity one in �(i), 1≤ i ≤ n.

Remark 4.2 Quasi-hereditary algebras were introduced by Cline, Parshall and Scott,
see e.g. [23]. There are some alternative definitions.

(a) An ideal J of an artin algebra A is hereditary provided that

• J ∈A- Mod is projective,
• HomA(J,A/J )= 0 (Ringel assumes J 2 = J instead of this),
• JNJ = 0, where N is the radical of A.

It can be shown that A is quasi-hereditary iff there exists a chain of ideals A=
J0 > J1 > · · ·> Jm = 0 with Ji/Ji+1 hereditary in A/Ji+1.

(b) Also, A is quasi-hereditary iff A- Mod is a highest weight category, that is the
following holds for all i:

• Q(i)/∇(i) ∈F(∇).
• If (Q(i)/∇(i) : ∇(j)) �= 0, then j > i.

For completeness, we include the definitions of tilting, cotilting and basic mod-
ules, see e.g. [71] and its bibliography. First, a module T is tilting provided that

• it has finite projective dimension;
• Exti (T , T )= 0 for all i ≥ 1;
• for any projective module P , there should exist an exact sequence 0 → P →
T0 → ·· · → Tm→ 0, with all Tj in the additive subcategory generated by T ,
denoted addT .

Second, a cotilting module should have

• finite injective dimension;
• Exti (T , T )= 0 for all i ≥ 1;
• for any injective module I , there should exist an exact sequence 0→ Tm→ ·· ·→
T0→ I→ 0, with all Tj in addT .

Lastly, a basic module is one with no direct summands of the form N ⊕N , with
N �= 0.

Assume that A is a quasi-hereditary algebra and consider the full subcategory
T = TA = F(�) ∩ F(∇) of (partial) tilting modules. It was shown in Theorem 5
in [71] that—for a quasi-hereditary algebra—there is a unique basic module T , that
is tilting and cotilting (in the sense just above), and such that T coincides with
addT . The relation between this T and the partial tilting modules is clarified by the
following result.
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Theorem 4.3 (Corollary 5, Proposition 2 in [71]) Let A be a quasi-hereditary alge-
bra. There exist indecomposable (partial) tilting modules T (i) ∈ T , for 1 ≤ i ≤ n,
with the following properties:

• Any indecomposable tilting module is isomorphic to one of them.
• T = T (1)⊕ · · · ⊕ T (n) is the tilting module mentioned above.
• There are exact sequences

0−→�(i)
β(i)−→ T (i)−→X(i)−→ 0,

0−→ Y(i)−→ T (i)
γ (i)−→∇(i)−→ 0,

where X(i) ∈ F({�(j) : j < i}), Y(i) ∈ F({∇(j) : j < i}), β(i) is a left F(∇)-
approximation and γ (i) is a right F(�)-approximation, 1 ≤ i ≤ n (see [71] for
undefined notions).

4.2 Induced and Produced

Let B ↪→A be an inclusion of algebras. We denote by ResAB the restriction functor
from the category A- Mod to B- Mod.

4.2.1 Definition and General Properties

The induced and produced modules of T ∈ B- Mod are

IndAB T =A⊗B T , ProAB T =HomB(A,T ). (4.2)

These are equipped with morphisms of B-modules ι : T ↪→ IndAB T , given by ι(t)=
1⊗ t for t ∈ T , and π : ProAB T � T , given by π(f )= f (1) for f ∈ HomB(A,T ).
The following properties are well-known.

(a) HomB(T ,ResAB M)�HomA(IndAB T ,M); that is, induction is left adjoint to re-
striction.

(b) For every S ∈ IrrA there exists T ∈ IrrB such that S is a quotient of IndAB T .
(c) HomB(ResAB N,T )� HomA(N,ProAB T ); that is, production (also called coin-

duction) is right adjoint to restriction.
(d) For every S ∈ IrrA there exists T ∈ IrrB such that S is a submodule of ProAB T .

4.2.2 The Finite Case

Let B ↪→ A still be an inclusion of algebras. Assume that A is a finite B-module.
Then ResAB , IndAB and ProAB restrict to functors (denoted by the same name) between
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the categories A- mod and B- mod of finite-dimensional modules; mutatis mutan-
dis, the preceding points hold in this context. Assume also that there exists a con-
travariant k-linear functor D : A- mod→ A- mod such that D(B- mod) ⊆ B- mod
and admits a quasi-inverse E : A- mod→ A- mod, so that D is an equivalence of
categories. It follows at once from the universal properties that

IndAB T �D
(
ProAB ET

)� E
(
ProAB DT

)
, (4.3)

ProAB T �D
(
IndAB ET

)� E
(
IndAB DT

)
. (4.4)

Hence D(IndAB T )� ProAB DT , D(ProAB T )� IndAB DT , and so on.
In this setting, consider the following conditions:

For every S ∈ IrrA,∃ a unique T ∈ IrrB such that IndAB T � S. (4.5)

For every S ∈ IrrA,∃ a unique U ∈ IrrB such that S ↪→ ProAB U. (4.6)

The head of IndAB T is simple for every T ∈ IrrB. (4.7)

The socle of ProAB U is simple for every U ∈ IrrB. (4.8)

Then (4.5) ⇐⇒ (4.6) and (4.7) ⇐⇒ (4.8). If all these conditions hold, then for
any T ∈ IrrB , there exists a unique U ∈ IrrB such that

IndAB T � S ↪→ ProAB U,

where S is the head of IndAB T and the socle of ProAB U . We set U =w0(T ).

4.2.3 Further Properties for Inclusions of Hopf Algebras

Let K be a Hopf subalgebra of a Hopf algebra H , with H finite over K . Then

IndHK T �
(
ProHK

∗T
)∗ � ∗(ProHK T

∗), ProHK T �
(
IndHK

∗T
)∗ � ∗(IndHK T

∗).

If H is pivotal, then these formulae are simpler because the left and right duals
coincide.

4.2.4 Quantum Groups

Let g be a simple Lie algebra, b a Borel subalgebra and q a root of unity of odd
order, relatively prime to 3 when g is of type G2. Let H = Uq(g) be the Lusztig’s q-
divided power quantized enveloping algebra and K = Uq(b). Let C be the category
of finite-dimensional H -modules of type 1, see [4], and Cb the analogous category
of K-modules. Then there are induced and produced functors IndHK ,ProHK : Cb→ C.
Then the Weyl and dual Weyl modules are the produced and induced modules of the
simple objects in Cb, parameterized conveniently by highest weights. This allows to
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define Weyl and dual Weyl filtrations and tilting modules; instead of appealing to
Theorem 4.3, one establishes the semisimplicity of the category of tilting modules
by establishing crucial cohomological results, see [3] for details.

4.3 Finite-Dimensional Nichols Algebras of Diagonal Type

We continue the analysis started in Sect. 2.4.

4.3.1 Weights

Let θ ∈ N and I= {1, . . . , θ}. Let Λ be a free abelian group with basis α1, . . . , αθ .
Let ≤ be the partial order in Λ defined by

λ≤ μ ⇐⇒ μ− λ ∈Λ+ :=
∑

i∈I
N0αi. (4.9)

Let us fix a Z-linear injective map E :Λ→ R such that E(αi) > 0 for all i ∈ I.
This induces a total order onΛ by λ� μ ⇐⇒ E(λ)≤E(μ); clearly, λ≤ μ implies
λ� μ.

Given a Λ-graded vector space M =⊕
λ∈ΛMλ, the λ’s such that Mλ �= 0 are

called the weights of M ; the set of all its weights is denoted Π(M).

4.3.2 Nichols Algebras of Diagonal Type

Let (qij )i,j∈I be a symmetric matrix with entries in k
×. Let (V , c) be a braided

vector space of diagonal type with matrix (qij )i,j∈I, with respect to a basis (vi)i∈I.
The Nichols algebra B(V ) has a Λ-grading determined by degvi = αi , i ∈ I. By
[54], there exists an ordered set S̄ of homogeneous elements of T (V ) and a function
h : S̄→N∪ {∞} such that:

• The elements of S̄ are hyperletters in (vi)i∈I.
• The projection T (V )→ B(V ) induces a bijection of S̄ with its image S. Denote

also by h : S→N∪ {∞} the induced function.
• The following elements form a basis of B(V ):

{
s
e1
1 · · · sett : t ∈N0, s1 > · · ·> st , si ∈ S,0< ei < h(si)

}
. (4.10)

When S is finite, two distinct elements in S have different degree, and we can
label the elements in S with a finite subset ΔV+ of Λ+; this is instrumental to define
the root system R of (V , c) [43].

Let W be another braided vector space of diagonal type with matrix (q−1
ij )i,j∈I,

with respect to a basis w1, . . . ,wθ ; we shall consider the Λ-grading on the Nichols
algebra B(W) determined by degwi =−αi , i ∈ I.
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We assume from now on that dimB(V ) <∞; hence dimB(W) <∞. Under this
assumption, the connected components of (qij ) belong to the list given in [41]. An
easy consequence is that qii �= 1 and qij is a root of 1 for all i, j ∈ I; this last claim
follows because the matrix (qij ) is assumed to be symmetric. Also, S is finite and h
takes values in N. Thus (4.10) says that

Π
(
B(V )

)=
{∑

s∈S
es deg s,0≤ es < h(s)

}
.

Note that 0≤ α ≤ � for all α ∈Π(B(V )), where

�=
∑

s∈S

(
h(s)− 1

)
deg s = degBtop(V ) ∈Π(

B(V )
)
. (4.11)

4.3.3 Pre-Nichols Algebras

A pre-Nichols algebra of V is any graded braided Hopf algebra T intermediate
between B(V ) and T (V ): T (V )� T � B(V ) (Masuoka). The defining relations of
the Nichols algebra B(V )= T (V )/J (V ) are listed as (40), . . . , (68) in Theorem 3.1
in [15]. Now we observe that, since dimB(V ) <∞, the following integers exist:

−aij :=min
{
n ∈N0 : (n+ 1)qii

(
1− qniiq2

ij

)= 0
}

(4.12)

for all j ∈ I− {i}. Set also aii = 2. The distinguished pre-Nichols algebra of V is
B̂(V )= T (V )/Ĵ (V )=⊕

n∈N0
B̂n(V ), where Ĵ (V ) is the ideal of T (V ) generated

by

• relations (41), . . . , (68) in Theorem 3.1 in [15],
• the quantum Serre relations (adc xi)1−aij xj for those vertices such that q

aij
ii =

qij qji .

The ideal Ĵ (V ) was introduced in [15], see the paragraph after Theorem 3.1;
Ĵ (V ) is a braided bi-ideal of T (V ), so that there is a projection of braided Hopf
algebras B̂(V )� B(V ) (Proposition 3.3 in [15]).

Definition 4.4 We say that p ∈ {1, . . . , θ} is a Cartan vertex if, for every j �= p,
q
apj
pp = qpjqjp . In such case, ordqpp ≥ 1− apj by hypothesis.

Clearly the projection T (V )→ B̂(V ) induces a bijection of S̄ with its image Ŝ.
Denote again by h the induced function. Let ĥ : Ŝ→N∪ {∞} be the function given
by

ĥ(s)=
{
∞, if s is conjugated to a Cartan vertex

h(s), otherwise.



From Hopf Algebras to Tensor Categories 25

Then the following set is a basis of B̂(V ), see the end of the proof of Theorem 3.1
in [15]:

{
s
e1
1 · · · sett : t ∈N0, s1 > · · ·> st , si ∈ Ŝ,0< ei < ĥ(si)

}
. (4.13)

4.3.4 Lusztig Algebras

The Lusztig algebra L(V ) of V is the graded dual of B̂(V ), that is L(V ) =⊕
n∈N0

Ln(V ), where Ln(V )= B̂n(V )∗. The Lusztig algebra L(V ) of V is the ana-
logue of the q-divided powers algebra introduced in [57, 58].

4.4 The Small Quantum Groups

We consider finite-dimensional pointed Hopf algebras attached to the matrix
(qij )i,j∈I, analogues of the small quantum groups or Frobenius-Lusztig kernels.
We need the following additional data: A finite abelian group Γ , provided with
elements g1, . . . , gθ ∈ Γ and characters χ1, . . . , χθ ∈HomZ(Γ,k

×) such that

χj (gi)= qij , i, j ∈ I. (4.14)

We define a structure of Yetter-Drinfeld module over kΓ on W ⊕ V by

vi ∈ V χi
gi
, wi ∈Wχ−1

i
gi , i ∈ I. (4.15)

Let u be the Hopf algebra T (W ⊕ V )#kΓ/I, where I is the ideal generated by
J (V ), J (W) and the relations

viwj − χ−1
j (gi)wjvi − δij

(
g2
i − 1

)
i, j ∈ I. (4.16)

This is a pointed quasi-triangular Hopf algebra with dimu = |Γ |dimB(V )2. The
freedom to choose the abelian group Γ allows more flexibility, but otherwise this
is very close to the small quantum groups (with more general Nichols algebras).
By choosing Γ appropriately, u is a spherical Hopf algebra. Let ub (resp. u−) be
the subalgebra of u generated by v1, . . . , vθ and Γ (resp. w1, . . . ,wθ ). Consider the
morphisms of algebras ρV : B(V )→ u, ρW : B(W)→ u and ρΓ : kΓ → u, given
by ρV (vi)= vi , ρW(wi)=wi , ρΓ (gi)= gi , i ∈ I. Then

(a) ρV , ρW , ρΓ give rise to isomorphisms B(W)� u−, B(V )#kΓ � ub.
(b) The map B(V ) ⊗ B(W) ⊗ kΓ → u, v ⊗ w ⊗ g �→ ρV (v)ρW (w)ρΓ (g) is a

coalgebra isomorphism.
(c) The multiplication maps u− ⊗ ub→ u, ub⊗ u− → u are linear isomorphisms.
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See Theorem 5.2 in [61], Corollary 3.8 in [11]. Now suppose that one would like
to define tilting modules over u, ignoring that this is not a quasi-hereditary algebra.
Inducing from ub, we see that simple modules correspond to characters of Γ ; but
the set of simple modules could not be totally ordered and (4.6) and (4.7) do not
necessarily hold. A first approach to remedy this that might come to the mind is to
assume the following extra hypothesis: There exists a Z-bilinear form 〈 , 〉 : Γ ×
Λ→ k

× such that

〈gi, αj 〉 = qij , i, j ∈ I. (4.17)

Then we may consider a category that is an analogue of category of representations
of the algebraic groupG1T in positive characteristic, or else of its quantum analogue
in the literature of quantum groups. Let Cu be the category of finite-dimensional u-
modules M with a Λ-grading M =⊕

λ∈ΛMλ, compatible with the action of u in
the sense

Mλ =
{
m ∈M : g ·m= 〈g,λ〉m,g ∈ Γ }

, λ ∈Λ, (4.18)

vi ·Mλ =Mλ+αi , wi ·Mλ =Mλ−αi , λ ∈Λ, i ∈ I. (4.19)

Morphisms in Cu preserve both the action of u and the grading by Λ. The cate-
gory Cub is defined analogously. Both categories Cu and Cub are spherical tensor
categories (up to an appropriate choice of Γ ), with duals defined in the obvious
way. There are functors Resu

ub
, Indu

ub
and Prou

ub
between the categories Cu and Cub ;

indeed

Indu
ub
T = u⊗ub T � B(W)⊗ T ,

Prou
ub
T =Homub(u, T )�Hom

(
B(W),T

)
,

so that the grading in Indu
ub
T , resp. Prou

ub
T , arises from that of B(W)⊗ T , resp.

Hom(B(W),T ).
Given λ ∈Λ, we denote by kλ the vector space with generator 1λ, considered as

object in Cub by

deg 1λ = λ, g · 1λ = 〈g,λ〉1λ, g ∈ Γ, v · 1λ = 0, v ∈ V.
Note that kλ � kμ in ub- mod whenever λ− μ ∈ Γ ⊥, but they are not isomorphic
as objects in Cub unless λ= μ. Clearly, IrrCub = {kλ : λ ∈Λ}.

Consider the modules Prou
ub
(kλ) and �(λ) := Indu

ub
(kλ). We know

Π
(
�(λ)

)= {
λ− α : α ∈Π(

B(V )
)}
, (4.20)

Π
(
Prou

ub
(kλ)

)= {
λ+ α : α ∈Π(

B(V )
)}
. (4.21)

Thus, �(λ) has a highest weight λ and a lowest weight λ−�, both of multiplicity 1;
and Prou

ub
(kλ) has a highest weight λ+ � and a lowest weight λ, both of multiplic-

ity 1. For convenience, set ∇(λ)= Prou
ub
(kλ−�)��(−λ+ �)∗, since k

∗
λ � k−λ.
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The statements (a), (b), (c) and (d) in Sect. 4.2.1 above carry over to the present
setting. We claim that (4.5), (4.6), (4.7) and (4.8) also hold here.

Indeed, let S ∈ IrrCu and λ,μ ∈ Π(S) such that μ � τ � λ for all τ ∈ Π(S).
If m ∈ Sλ − 0, then vi ·m= 0 for all i ∈ I by (4.19), hence km � kλ and we have
�(λ)� S and Π(S)⊆ {λ− α : α ∈Π(B(V ))} by (4.20). Moreover, if �(λ′)� S,
then λ ∈Π(S)⊆ {λ′ − α : α ∈Π(B(V ))}, hence λ′ = λ, showing (4.5). The proof
of (4.7) is standard: �(λ) has a unique maximal submodule, which is the sum of all
submodules intersecting trivially �(λ)λ. Now (4.6) and (4.8) follow by duality, so
that S ↪→∇(μ).

In conclusion we have the following standard result.

Proposition 4.5 If E(λ) := head of �(λ), then IrrCu = {E(λ) : λ ∈Λ}. If μ ∈ Γ ⊥,
then dimE(μ)= 1 and E(μ)⊗ E(λ)� E(λ)⊗ E(μ)� E(λ+ μ). There is a bi-
jection w0 :Λ→Λ such that E(λ) := socle of ∇(w0(λ)).

The modules �(λ), resp. ∇(λ), are called the Weyl modules, resp. the dual Weyl
modules. We may then go on and define good and Weyl filtrations, and tilting mod-
ules. However, it is likely that tilting modules are projective, thus with 0 quantum
dimension, as is the case for G1T , see Sect. 3.4 in [2], [47].

4.5 Generalized Quantum Groups

The next idea is to replace Γ by an infinite abelian group Q, perhaps free of finite
rank, and the Nichols algebras B(V ), B(W) by the distinguished pre-Nichols alge-
bras B̂(V ), B̂(W). Namely, we assume thatQ is provided with elementsK1, . . . ,Kθ

and characters Υ1, . . . ,Υθ ∈ HomZ(Q,k
×) such that Υj (Ki) = qij , i, j ∈ I. Then

W ⊕ V is also a Yetter-Drinfeld module over kQ by vi ∈ V Υi
Ki

, wi ∈WΥ −1
i

Ki
, i ∈ I.

Let U(V )= T (W ⊕V )#kQ/̂I where Î is the ideal generated by Ĵ (V ), Ĵ (W) and
the relations

viwj − χ−1
j (gi)wjvi − δij

(
g2
i − 1

)
i, j ∈ I. (4.22)

This Hopf algebra, for a suitable Q, was introduced in [15]; it is the analogue of the
quantized enveloping algebra at a root of one for (qij )i,j∈I in the version of [26]. It
also has a triangular decomposition similar as in the case of u. Furthermore, there
are so-called Lusztig isomorphisms, because they generalize the braid group repre-
sentations defined by Lusztig, see e.g. [59]. Actually, the definition of the ideal Î in
[15] was designed to have (a) a braided bi-ideal, and (b) the Lusztig automorphisms
at the level of U(V ), generalizing results from [42]. More precisely, the situation is
as follows.

We assume that Q and Γ are accurately chosen and that there is a group epimor-
phismQ→ Γ . Given i ∈ I, we define the i-th reflection of (V , c). Define si ∈AutΛ
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by si(αj )= αj − aijαi , see (4.12). Then si(V , c)= (V , c′), where C′ is the braid-
ing of diagonal type with matrix (̃qrs)r,s∈I. Here q̃rs = (si(αr )|si(αs)); we omit the
mention to the braidings c, c′, etc. Then

• There are algebra isomorphisms Ti, T
−
i : u(V )→ u(siV ), such that TiT

−
i =

T −i Ti = idu(V ) (Theorem 6.12 in [42]).
• There are algebra isomorphisms Ti, T

−
i : U(V )→ U(siV ), such that TiT

−
i =

T −i Ti = idU(V ) (Proposition 3.26 in [15]), compatible with those of u(V ).

There is a Λ-grading on T (W ⊕ V )#kQ given by degγ = 0, γ ∈Q, degvi =
αi = −degwi , i ∈ I; it extends to gradings of u(V ) and U(V ). Hence we may
consider categories CU and so on. However, the Hopf algebra U(V ) has a large
center Z and is actually finite over it. Thus, it seems that its representation theory
should be addressed with the methods of [26, 27].

It remains a third tentative: to repeat the above considerations replacing the dis-
tinguished pre-Nichols algebras B̂(V ), B̂(W) by the Lusztig algebras L(V ), L(W).
We hope to address this in future publications.
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Pattern-of-Zeros Approach to Fractional
Quantum Hall States and a Classification
of Symmetric Polynomial of Infinite Variables

Xiao-Gang Wen and Zhenghan Wang

Abstract Some purely chiral fractional quantum Hall states are described by sym-
metric or anti-symmetric polynomials of infinite variables. In this article, we review
a systematic construction and classification of those fractional quantum Hall states
and the corresponding polynomials of infinite variables, using the pattern-of-zeros
approach. We discuss how to use patterns of zeros to label different fractional quan-
tum Hall states and the corresponding polynomials. We also discuss how to calcu-
late various universal properties (i.e. the quantum topological invariants) from the
pattern of zeros.

1 Introduction

To readers who are interested in physics, this is a review article on the pattern-of-
zeros approach to fractional quantum Hall (FQH) states. To readers who are inter-
ested in mathematics, this is an attempt to classify symmetric polynomials of infinite
variables and Zn vertex algebra. To those interested in mathematical physics, this
article tries to provide a way to systematically study pure chiral topological quantum
field theories that can be realized by interacting bosons. In the next two subsections,
we will review briefly the definition of quantum many-boson systems, and the def-
inition of quantum phase for non-physicists. Then, we will give an introduction of
the problems studied in this paper.
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1.1 What Is a Quantum Many-Boson System

The fermionic FQH states [1, 2] are described by anti-symmetric wave functions,
while the bosonic FQH states are described by symmetric wave functions. Since
there is an one-to-one correspondence between the anti-symmetric wave functions
and the symmetric wave functions, in this article, we will only discuss bosonic FQH
states and their symmetric wave functions.

Bosonic FQH systems are quantum many-boson systems. Let us first define
mathematically what is a quantum many-boson system, using an N -boson system
in two spatial dimensions as an example. A many-body state of N bosons is a sym-
metric complex function of N variables

Ψ (r1, . . . , r i , . . . , rj , . . . , rN)

= Ψ (r1, . . . , rj , . . . , r i , . . . , rN) (1)

where the ith variable r i = (xi, yi) describes the coordinates of the ith boson. All
such symmetric functions form a Hilbert space where the normal is defined as

〈Ψ |Ψ 〉 =
∫ ∏

i

dxidyiΨ
∗Ψ (2)

A quantum system of N bosons is described by a Hamiltonian, which is a Her-
mitian operator in the above Hilbert space. It may have a form

H(g1, g2)=
N∑

i=1

−1

2

(
∂2
xi
+ ∂2

yi

)+
∑

i<j

Vg1,g2(r i − rj ) (3)

Here Vg1,g2(r i − rj ) is the interaction potential between two bosons. We require the
interaction potential to be short ranged:

Vg1,g2(x, y)= 0, if
√
x2 + y2 > ξ, (4)

where ξ describes the interaction range. Hamiltonians with short-ranged interactions
are called local Hamiltonians.

The ground state of the N boson system is an eigenvector of H :

H(g1, g2)Ψg1,g2(r1, . . . , rN)=Egrnd(g1, g2)Ψg1,g2(r1, . . . , rN) (5)

with the minimal eigenvalue Egrnd(g1, g2). The eigenvalues of the Hamiltonian are
called energies.

Here we assume that the interaction potential may depend on some parameters
g1, g2. As we change g1, g2, the ground states Ψg1,g2 for different g1, g2’s can some
times have similar properties. We say that those states belong to the same phase.
Some other times, they may have very different properties. Then we regard those
states to belong to the different phases.
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Fig. 1 The curves mark the position of singularities in functionsEgrnd(g1, g2)/N and 〈O〉(g1, g2).
They also represent phase transitions. The regions, A, B, and C, separated by phase transitions
correspond to different phases

1.2 What Are Quantum Phases

More precisely, quantum phases are defined through quantum phase transitions. So
we first need to define what quantum phase transitions are.

As we change the parameters g1, g2 in the Hamiltonian H(g1, g2), if the average
of ground state energy per particle Egrnd(g1, g2)/N has a singularity in N →∞
limit, then the system has a phase transition. More generally, if the average of any
local operator O on the ground state

〈O〉(g1, g2)=
∫ ∏

i

dxidyiΨ
∗
g1,g2

OΨg1,g2 (6)

has a singularity in N→∞ limit as we change g1, g2, then the system has a phase
transition (see Fig. 1).

Using the quantum phase transition, we can define an equivalence relation be-
tween quantum ground states Ψg1,g2 in N→∞ limit: Two quantum ground states
Ψg1,g2 and Ψg′1,g′2 are equivalent if we can find a path that connect (g1, g2) and
(g′1, g′2) such that we can change Ψg1,g2 into Ψg′1,g′2 without encountering a phase
transition. The quantum phases are nothing but the equivalent classes of such an
equivalence relation [3]. In short, the quantum phases are regions of (g1, g2) space
which are separated by phase transitions (see Fig. 1).

1.3 How to Classify Quantum Phases of Matter

One of the most important questions in condensed matter physics is how to classify
the many different quantum phases of matter. One attempt is the theory of symmetry
breaking [4–6], which tells us that we should classify various phases based on the
symmetries of the ground state wave function. Yet with the discovery of the FQH
states [1, 2] came also the understanding that there are many distinct and fascinating
quantum phases of matter, called topologically ordered phases [7, 8], whose char-
acterization has nothing at all to do with symmetry. How should we systematically
classify the different possible topological phases that may occur in a FQH system?
In this paper, we will try to address this issue.
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We know that the FQH states contain topology-dependent degenerate ground
states, which are topologically stable (i.e. robust against any local perturbations
of the Hamiltonians). This allows us to introduce the concept of topological order
in FQH states [9, 10]. Such topology-dependent degenerate ground states suggest
that the low energy theories describing the FQH states are topological quantum
field theories [11–13], which take a form of pure Chern-Simons theory in 2 + 1
dimensions [14–19]. So one possibility is that we may try to classify the different
FQH phases by classifying all of the different possible pure Chern-Simons theories.
Although such a line of thinking leads to a classification of Abelian FQH states
in terms of integer K-matrices [15–20], it is not a satisfactory approach for non-
Abelian FQH states [21, 22] because we do not have a good way of knowing which
pure Chern-Simons theories can possibly correspond to a physical system made of
bosons and which cannot.

Another way to classify FQH states is through the connection between FQH
wave functions and conformal field theory (CFT). It was discovered around 1990
that correlation functions in certain two-dimensional conformal field theories may
serve as good model wave functions for FQH states [21, 23, 24]. Thus perhaps
we may classify FQH states by classifying all of the different CFTs. However, the
relation between CFTs and FQH states is not one-to-one. If a CFT produces a FQH
wave function, then any other CFTs that contain the first CFT can also produce the
FQH wave function [24].

Following the ideas of CFT and in an attempt to obtain a systematic classifica-
tion of FQH states without using conformal invariance, it was shown recently that
a wide class of FQH states and their topological excitations can be classified by
their patterns of zeros, which describe the way ideal FQH wave functions go to
zero when various clusters of particles are brought together [25–28]. (We would
like to point out that the “1D charge-density-wave” characterization of FQH states
[29–34] is closely related to the pattern-of-zeros approach.) This analysis led to the
discovery of some new non-Abelian FQH states whose corresponding CFT has not
yet been identified. It also helped to elucidate the role of CFT in constructing FQH
wave functions: The CFT encodes the way the wave function goes to zero as various
clusters of bosons are brought together. The order of these zeros must satisfy certain
conditions and the solutions to these conditions correspond to particular CFTs. Thus
in classifying and characterizing FQH states, one can bypass the CFT altogether
and proceed directly to classifying the different allowed pattern of zeros and subse-
quently obtaining the topological properties of the quasiparticles from the pattern of
zeros [26–28]. This construction can then even be thought of as a classification of
the allowed CFTs that can be used to construct FQH states [35]. Furthermore, these
considerations give a natural notion of which pattern of zeros solutions are simpler
than other ones. In this sense, then, one can see that the Moore-Read Pfaffian quan-
tum Hall state [21] is the “simplest” non-Abelian generalization of the Laughlin
state.

We would like to point that in the pattern-of-zeros classification of FQH states,
we do not try to study the phase transition and equivalence classes. Instead, we just
try to classify some special complex functions of infinite variables. We hope those
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Fig. 2 The black dots
represent the ideal wave
functions that can represent
each quantum phase

special complex functions can represent each equivalence class (i.e. represent each
quantum phase) (see Fig. 2).

2 Examples of Fractional Quantum Hall States

Before trying to classify a type of quantum phases—FQH phases, let us study some
examples of ideal FQH wave functions to gain some intuitions.

2.1 The Hamiltonian for FQH Systems

A FQH state of N -bosons is described by the following Hamiltonian:

H(g1, g2)=
N∑

i=1

(
i∂zi − i

1

4
z∗i

)(
i∂z∗i + i

1

4
zi

)
+

∑

i<j

Vg1,g2(zi − zj ) (7)

where the two dimensional plane is parametrized by z = x + iy. When Vg1,g2 = 0,
there are many wave functions

Ψ (z1, . . . , zN)= P(z1, . . . , zN)e
−(1/4)∑N

i=1 ziz
∗
i ,

P = a symmetric polynomial
(8)

that all have the minimal zero eigenvalue (or energy) for any P :

[
N∑

i=1

(
i∂zi − i

1

4
z∗i

)(
i∂z∗i + i

1

4
zi

)]

P(z1, . . . , zN)e
−(1/4)∑N

i=1 ziz
∗
i = 0, (9)

since

e(1/4)zz
∗
(

i∂z − i
1

4
z∗

)(
i∂z∗ + i

1

4
z

)
e−(1/4)zz∗ =

(
i∂z − i

1

2
z∗

)
i∂z∗ (10)

For small non-zero Vg1,g2 , there is only one minimal energy wave function de-
scribed by a particular polynomial P whose form is determined by Vg1,g2 . In gen-
eral, it is very hard to calculate this unique ground state wave function. In the fol-
lowing, we will show that for some special interaction potential Vg1,g2 , the ground
state wave function can be obtained exactly.
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2.2 Three Ideal FQH States: The Exact Zero-Energy Ground
States

For interaction

V1/2(z1, z2)= δ(z1 − z2), (11)

the wave function P1/2(z1, . . . , zN)e
−(1/4)∑N

i=1 ziz
∗
i with

P1/2 =
∏

i<j

(zi − zj )2 (12)

is the only zero energy state with minimal total power of zi ’s. This is because
∫ ∏

i

d2zie
−(1/4)∑i |zi |2P ∗1/2

[∑

i<j

V1/2(zi, zj )

]
P1/2e

−(1/4)∑i |zi |2 = 0. (13)

Such a state is called ν = 1/2 Laughlin state.
For interaction

V1/4(z1, z2)= v0δ(z1 − z2)+ v2∂
2
z∗1
δ(z1 − z2)∂

2
z1
, (14)

the wave function P1/4(z1, . . . , zN)e
−(1/4)∑N

i=1 ziz
∗
i with

P1/4 =
∏

i<j

(zi − zj )4 (15)

is the only zero energy state with minimal total power of zi ’s, since
∫ ∏

i

d2zie
−(1/4)∑i |zi |2P ∗1/4

[∑

i<j

V1/4(zi, zj )

]
P1/4e

−(1/4)∑i |zi |2 = 0. (16)

Such a state is called ν = 1/4 Laughlin state.
Now let us consider interaction [36, 37]

VPf(z1, z2, z3)= S
[
v0δ(z1 − z2)δ(z2 − z3)− v1δ(z1 − z2)∂z∗3δ(z2 − z3)∂z3

]
(17)

where S symmetrizes among z1, z2, z3 to make VPf(z1, z2, z3) a symmetric function.

Then the wave function PPf(z1, . . . , zN)e
−(1/4)∑N

i=1 ziz
∗
i with

PPf =A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN
)∏

i<j

(zi − zj )

= Pf

(
1

zi − zj
)∏

i<j

(zi − zj ) (18)
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is the only zero energy state with minimal total power of zi ’s, where A anti-
symmetrizes among z1, . . . , zN . This is because

∫ ∏

i

d2zie
−(1/4)∑i |zi |2P ∗Pf

[ ∑

i<j<k

VPf(zi , zj , zk)

]
PPfe

−(1/4)∑i |zi |2 = 0. (19)

Such a state is called the Pfaffian state [21].

3 The Universal Properties of FQH Phases

The three many-body wave functions P1/2e
−(1/4)∑i |zi |2 , P1/4e

−(1/4)∑i |zi |2 , and

PPfe
−(1/4)∑i |zi |2 have some amazing exact properties in N→∞ limit. We believe

that those properties do not depend on any local deformations of the wave func-
tions.1 In other words, those properties are shared by all the wave functions in the
same phase. We call such kind of properties universal properties.

The universal properties can be viewed as quantum topological invariants in
mathematics, since they do not change under any perturbations of the local Hamilto-
nian. Thus, from mathematical point of view, the symmetric polynomials of infinite
variables, such as P1/2, P1/2, and PPf, can have many quantum topological invari-
ants (i.e. the universal properties) once we define their norm to be

〈P |P 〉 =
∫ N∏

i=1

d2zi
∣∣P(z1, . . . , zN)

∣∣2e−(1/2)
∑ |zi |2 . (20)

Since the three wave functions have different universal properties, this implies
that the three wave functions belong to three different quantum phases. In this sec-
tion, we will discuss some of the universal properties, by first listing them in bold-
face. Then we will give an understanding of them from physics point of view. Those
conjectured universal properties are exact, but not rigorously proven to be true.

3.1 The Filling Fractions of FQH Phases

The density profile of a FQH wave function is given by

ρ(z)=
∫
d2z2 · · ·d2zN |P(z, z2, . . . , zN)|2e−(1/2)

∑ |zi |2
∫
d2z1d2z2 · · ·d2zN |P(z1, z2, . . . , zN)|2e−(1/2)

∑ |zi |2 (21)

1A local deformation of a many-body wave function Ψ is generated as Ψ → Ψ ′ = eiδHΨ where
δH is a hermitian operator that can be viewed as an local Hamiltonian.
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Fig. 3 The shape of the
density profile ρ(z)

Fig. 4 a The density profile
of the lth orbital. b The filling
of the orbitals gives rise to a
disk-like density profile in c

We believe that

ν ≡ 2πρ(0) (22)

is a rational number in N →∞ limit. ν is called the filling fraction of the corre-
sponding FQH state. We find that

P1 =
∏
(zi − zj )→ ν = 1, P1/2 =

∏
(zi − zj )2→ ν = 1/2,

P1/4 =
∏
(zi − zj )4 → ν = 1/4,

PPf = Pf

(
1

zi − zj
)∏

(zi − zj )→ ν = 1.

(23)

Note that P1 is anti-symmetric and describe a many-fermion state, while P1/2, P1/4,
and PPf are symmetric and describe many-boson states.

We also believe that the density profile ρ(z) has disk shape (see Fig. 3) in largeN
limit: ρ(z) is almost a constant ν/2π for |z|<√2N/ν and quickly drop to almost
zero for |z|>√2N/ν.

3.1.1 Why ν = 1 for State Ψ1 = ∏
i<j (zi − zj )e−∑ |zi |2/4

We note that the one-particle eigenstates (the orbitals) for one-particle Hamiltonian
H0 = −∑

(∂z − 1
4z
∗)(∂z∗ + (1/4)z) can be labeled by the angular momentum l,

which is given by zle−(1/4)|z|2 . The one-particle eigenstate has a ring-like shape
with maximum at |z| = rl =

√
2l (see Fig. 4a). The ν = 1 many-fermion state is

obtained by filling the orbitals (see Fig. 4b):

Ψ =
∏

i<j

(zi − zj )e−(1/4)
∑ |zi |2 =A

[
(z1)

0(z2)
1 · · · ]e−(1/4)

∑ |zi |2 (24)

We see that there are l fermions within radius rl . So there is one fermion per
πr2

l / l = 2π area, and thus ν = 1 (see Fig. 4c).
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3.1.2 Why ν = 1/m for the Laughlin State Ψ1/m = ∏
i<j (zi − zj )me−∑ |zi |2/4

Let us consider the joint probability distribution of boson positions, which is given
by the absolute-value-square of the ground state wave function:

p(z1 · · · zN)∝
∣∣Ψ1/m(z1 · · · zN)

∣∣2

= e−2m
∑

i<j ln |zi−zj |−(m/2)∑i |zi |2 = e−βV (z1···zN ) (25)

Choosing T = 1
β
= m

2 , we can view e−βV (z1···zN ) as the probability distribution for
N particles with potential energy V (z1 · · · zN) at temperature T = m

2 . The potential
has a form

V =−m2
∑

i<j

ln |zi − zj | + m

4

∑

i

|zi |2 (26)

which is the potential for a two-dimensional plasma of ‘charge’ m particles [2]. The
two-body term −m2 ln |z− z′| represents the interaction between two particles and
the one-body term m

4 |z|2 represents the interaction of a particle with the background
“charge”.

For a uniform background “charge” distribution with charge density ρφ , a charge
m particle at z feel a force, F = (π |z|2ρφ)(m)/|z|. The corresponding background
potential energy is −ρφmπ

2 |z|2. We see that to produce the one-body potential en-
ergy m

4 |z|2 we need to set ρφ =−1/2π . Since the plasma must be “charge” neutral:
mρ + ρφ = 0, we find that ρ = 1

m
1

2π . So ν = 1/m.

3.2 Quasiparticle and Fractional Charge in ν = 1/m Laughlin
States

If we remove a boson at position ξ from the Laughlin wave function
∏
i<j (zi −

zj )
me−

∑ |zi |2/4, we create a hole-like excitation described by the wave function
Ψ hole
ξ (z1, . . . , zN):

Ψ hole
ξ (z1, . . . , zN)∝

∏

i

(ξ − zi)m
∏

i<j

(zi − zj )me−
∑ |zi |2/4 (27)

Despite the hole-like excitation has a charge= 1, the minimal value for non-zero in-
tegers, it is not the minimally charged excitation. The minimally charged excitation
corresponds to a quasi-hole excitation, which is described by the wave function

Ψ
quasi-hole
ξ (z1, . . . , zN)∝

∏

i

(ξ − zi)
∏

i<j

(zi − zj )me−
∑ |zi |2/4 (28)
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Fig. 5 The density profile of a many-boson wave function with a quasi-hole excitation at ξ

The density profile for the quasi-hole wave function Ψ quasi-hole
ξ (z1, . . . , zN) is given

by

ρξ (z)=
∫ ∏N

i=2 d2zi |Ψ quasi-hole
ξ (z, z2, . . . , zN)|2

∫ ∏N
i=1 d2zi |Ψ quasi-hole

ξ (z1, z2, . . . , zN)|2
(29)

ρξ (z) has a shape as in Fig. 5. The quasi-particle charge is defined as

Q=
∫

Dξ

d2z

(
ν

2π
− ρξ (z)

)
(30)

in the N→∞ limit, where Dξ is a big disk covering ξ . (Note that, away from the
quasi-hole, ρξ (z)= ν

2π .) We believe that the quasi-hole charge is a rational number
Q= 1/m [2].

One way to understand the above result is to note that m quasi-holes correspond
to a missing boson: [∏i (ξ − zi)]m =

∏
i (ξ − zi)m. So a quasi-hole excitation has a

fractional charge 1/m although the FQH state is formed by particles of charge 1!
We can also calculate the quasi-hole charge directly. Note that, for the Laughlin

state Ψ quasi-hole
ξ (z1, . . . , zN)with a quasi-hole at ξ , the corresponding joint probabil-

ity distribution of boson positions is given by p({zi}) ∝ |Ψ quasi-hole
ξ ({zi})| = e−βV

with

V =−m2
∑

i<j

ln |zi − zj | −m
∑

i

ln |zi − ξ | + m

4

∑

i

|zi |2 (31)

Now, the one-body potential term −m ln |z− ξ |+ m
4 |z|2 is produced by background

charge density: ρφ =− 1
2π +δ(ξ). The “charge” neutral conditionmρξ (z)+ρφ(z)≈

0 allows us to show that ρξ (z) has a shape as in Fig. 5 and satisfies Eq. (30) with
Q= 1/m.

3.3 The Concept of Quasiparticle Type

We would like to point out that the wave function Ψ quasi-hole
ξ (z1, . . . , zN)∝∏

i (ξ −
zi)

∏
i<j (zi − zj )me−

∑ |zi |2/4 just describes a particular kind of quasiparticle exci-
tation. More general quasiparticle excitations can be constructed as

Ψ
quasi-hole-k
ξ (z1, . . . , zN)∝

∏

i

(ξ − zi)k
∏

i<j

(zi − zj )me−
∑ |zi |2/4 (32)
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which can be viewed as a bound state of k charge-1/m quasi-holes. So it appears
that different types of quasiparticles are labeled by integer k.

Here we would like to introduce a concept of quasiparticle type: two quasipar-
ticles belong to the same type if they only differ by a number of bosons that form
the FQH state. Since the quasiparticle labeled by k = m correspond to a boson,
so the different types of quasiparticles in the ν = 1/m Laughlin state are labeled
by k mod m. There are m types of quasiparticles in the ν = 1/m Laughlin state
(including the trivial type labeled by k = 0).

There is an amazing relation between the number of quasiparticle type and the
ground state degeneracy of the FQH state on torus: the number of quasiparticle type
always equal to the ground state degeneracy on torus, in the N→∞ limit.

3.4 Fractional Statistics in Laughlin States

We note that the normalized state with a quasi-hole at ξ is described by an N -boson
wave function parameterized by ξ :

Ψ
quasi-hole
ξ = [

N
(
ξ, ξ∗

)]−1/2 ∏

i

(ξ − zi)
∏

i<j

(zi − zj )2e−
∑ |zi |2/4 (33)

where N(ξ, ξ∗) is the normalization factor. The normalized two quasi-hole wave
function is given by

Ψ
quasi-hole
ξ,ξ ′ = [

N
(
ξ, ξ∗, ξ ′, ξ ′∗

)]−1/2

×
∏

i

(ξ − zi)
∏

i

(
ξ ′ − zi

)∏

i<j

(zi − zj )2e−
∑ |zi |2/4 (34)

We conjecture that the above two normalization factors are given by

N
(
ξ, ξ∗

)= e(1/(2m))|ξ |2 ×Const. (35)

and

N
(
ξ, ξ∗, ξ ′, ξ ′∗

)= e(1/(2m))(|ξ |2+|ξ ′|2)+(1/m) ln |ξ−ξ ′|2 ×Const. (36)

in the N→∞ limit, where ξ and ξ ′ are hold fixed in the limit.
The quasi-holes in the Laughlin states also have fractional statistics [38–41]. We

can calculate the fractional statistics by calculating the Berry phase [42] of moving
the quasi-holes. It turns out that the Berry phase of moving the quasi-holes can
be calculated from the above normalization factors. Let us first calculate the Berry
phase for one quasi-hole and the normalization factor N(ξ, ξ∗). The Berry’s phase
�ϕ induced by moving ξ is defined as ei�ϕ = 〈Ψ quasi-hole

ξ |Ψ quasi-hole
ξ+dξ 〉. It is given by

�ϕ = aξdξ + aξ∗dξ∗, aξ =−i〈Ψξ | ∂
∂ξ
|Ψξ 〉, aξ∗ = −i〈Ψξ | ∂

∂ξ∗
|Ψξ 〉, (37)
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where aξ and aξ∗ are Berry connections. Since the unnormalized state
∏
i (ξ −

zi)
∏
i<j (zi − zj )

2e−
∑ |zi |2/4 has a special property that it only depends only on

ξ (holomorphic), the Berry connection (aξ , aξ∗) can be calculated from the normal-
ization N(ξ, ξ∗) of the holomorphic state:

aξ =− i

2

∂

∂ξ
ln

[
N

(
ξ, ξ∗

)]
, aξ∗ = i

2

∂

∂ξ∗
ln

[
N

(
ξ, ξ∗

)]
. (38)

Now let us calculate N(ξ, ξ∗). Let us guess that N(ξ, ξ∗) is given by Eq. (35).
To show the guess to be right, we need to show that the norm of |Ψ quasi-hole

ξ 〉 does

not depend on ξ . We note that |Ψ quasi-hole
ξ |2 = e−βVξ with

Vξ (z1, . . . , zN)=−m2
∑

i<j

ln |zi − zj | −m
∑

i

ln |zi − ξ |

+ 1

4
|ξ |2 + m

4

∑

i

|zi |2. (39)

Here Vξ can be viewed as the total energy of a plasma of N ‘charge’-m particles at
zi and one ‘charge’-1 particle hold fixed at ξ . Both particles interact with the same
background charge. Note that the norm 〈Ψ quasi-hole

ξ |Ψ quasi-hole
ξ 〉 is given by

〈
Ψ

quasi-hole
ξ

∣∣Ψ quasi-hole
ξ

〉=
∫ ∏

d2zie
−βVξ (40)

Due to the screening of the plasma, we argue that
∫ ∏

d2zie−βVξ does not depend

on ξ in N →∞ limit, which implies that 〈Ψ quasi-hole
ξ |Ψ quasi-hole

ξ 〉 does not depend
on ξ . Thus N(ξ, ξ∗) is indeed given by Eq. (35).

This allows us to find

aξ =−i
1

4m
ξ∗, aξ∗ = i

1

4m
ξ (41)

Using such a Berry connection, let us calculate the Berry’s phase for moving ξ

around a circle C of radius r center at z= 0:

�ϕ =
∮

C

(
aξdξ + aξ∗dξ∗

)

= 2π
r2

4m
× 2= 2π

Area enclosed by C

2πm

= 2π × number of enclosed bosons by C. (42)

We see that the Berry connection describes a uniform ‘magnetic’ field. The above
result can also be understood directly from the wave function

∏
i (ξ − zi)

∏
i<j (zi−

zj )
2e−

∑ |zi |2/4.
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Similarly, we can calculate the Berry connection for two quasi-holes. Let us guess
that N(ξ, ξ∗, ξ ′, ξ ′∗) is given by Eq. (36). For such a normalization factor, we find
that |Ψ quasi-hole

ξ,ξ ′ |2 = e−βVξ,ξ ′ with

Vξ,ξ ′(z1, . . . , zN)=−m
∑

i

[
ln |zi − ξ | + ln

∣∣zi − ξ ′
∣∣]

+ 1

4

[|ξ |2 + ∣∣ξ ′
∣∣2]− ln

∣∣ξ − ξ ′∣∣

−m2
∑

i<j

ln |zi − zj | + m

4

∑

i

|zi |2 (43)

Such a Vξ,ξ ′ can be viewed as the total energy of a plasma of N ‘charge’-m
particles at zi and two ‘charge’-1 particles at ξ and ξ ′. Due to the screening,∫ ∏

d2zie
−βVξ,ξ ′ does not depend on ξ and ξ ′ in N→∞ limit, which implies that

〈Ψ quasi-hole
ξ,ξ ′ |Ψ quasi-hole

ξ,ξ ′ 〉 does not depend on ξ and ξ ′. So our guess is correct. Using
the normalization factor (36), we find the Berry connection to be

aξ =−i
1

4m
ξ∗ + i

2m

1

ξ − ξ ′ , aξ∗ = i
1

4m
ξ − i

2m

1

ξ∗ − ξ ′∗ (44)

Using such a Berry connection, we can calculate the fractional statistics of the
quasi-holes in the ν = 1/m Laughlin state. Moving a quasi-hole around another, we
find the Berry phase to be �ϕ = enclosed area

m
− 2π

m
(see Eq. (42) for comparison). If

we only look at the sub-leading term −2π/m, we find that exchanging two quasi-
holes give rise to phase θ = −π/m, since exchanging two quasi-holes correspond
to moving a quasi-hole half way around another and we get the half of −2π/m.
We find that quasi-holes in the ν = 1/m Laughlin state have a fractional statistics
described by the phase factor e−iπ/m [40, 41].

The term enclosed area
m

implies that the quasi-holes sees a uniform magnetic field.
So the quasi-holes in the ν = 1/m Laughlin state are anyons in magnetic field.

3.5 Quasi-holes in the ν = 1 Pfaffian State

3.5.1 Charge-1 and Charge-1/2 Quasi-holes

Ground state wave function for the ν = 1 Pfaffian state is given by

ΨPf =A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN
)
Ψ1 = Pf

(
1

zi − zj
)
Ψ1 (45)

where Ψ1 is given by
∏
i<j (zi−zj )e−(1/4)

∑
i |zi |2 . A simple quasi-hole state is given

by
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Ψ
charge-1
ξ =

∏
(ξ − zi)ΨPf

=A
(
(ξ − z1)(ξ − z2)

z1 − z2

(ξ − z3)(ξ − z4)

z3 − z4
· · ·

)
Ψ1

= Pf

(
(ξ − zi)(ξ − zj )

zi − zj
)
Ψ1 (46)

which is created by multiplying the factor
∏
(ξ − zi) to the ground state wave func-

tion. Such a quasi-hole has a charge 1. The above quasi-hole can be splitted into
two fractionalized quasi-holes. A state with two fractionalized quasi-holes at ξ and
ξ ′ is given by

Ψ
charge-1/2
ξ,ξ ′ =A

(
(ξ − z1)(ξ

′ − z2)+ (1↔ 2)

z1 − z2

(ξ − z3)(ξ
′ − z4)+ (3↔ 4)

z3 − z4
· · ·

)
Ψ1

= Pf

(
(ξ − zi)(ξ ′ − zj )+ (ξ − zj )(ξ ′ − zi)

zi − zj
)
Ψ1 (47)

Such a fractionalized quasi-hole has a charge 1/2. We note that combining two
charge-1/2 quasi-holes gives us one charge-1 quasi-hole: Ψ charge-1/2

ξ,ξ ∝ Ψ charge-1
ξ .

3.5.2 How Many States with Four Charge-1/2 Quasi-holes?

One of the state with four charge-1/2 quasi-holes at ξ1, ξ2, ξ3, and ξ4 is given by

P(12)(34) = Pf

(
(ξ1 − zi)(ξ2 − zi)(ξ3 − zj )(ξ4 − zj )+ (i↔ j)

zi − zj
)
Ψ1

= Pf

( [12,34]zizj
zi − zj

)
Ψ1 (48)

The other two are P(13)(14), P(14)(23). But only two of them are linearly independent
[43]. Using the relation

[12,34]zizj − [13,24]zizj = (zi − zj )2(ξ1 − ξ4)(ξ2 − ξ3)= z2
ij ξ14ξ23 (49)

we find (with z12 = z1 − z2, ξ12 = ξ1 − ξ2, etc.)

P(13)(24) =A
( [12,34]z1z2 − z2

12ξ14ξ23

z12

[12,34]z3z4 − z2
34ξ14ξ23

z34
· · ·

)
Ψ1

= P(12)(34) −NpairA
(
z12ξ14ξ23

[12,34]z3z4

z34
· · ·

)
Ψ1 (50)

So

P(12)(34) − P(13)(24) =Npairξ14ξ23A
(
z12
[12,34]z3z4

z34
· · ·

)
Ψ1 (51)
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Similarly

P(12)(34) − P(14)(23) =Npairξ13ξ24A
(
z12
[12,34]z3z4

z34
· · ·

)
Ψ1 (52)

Thus

P(12)(34) − P(13)(24)

ξ14ξ23
= P(12)(34) − P(14)(23)

ξ13ξ24
(53)

We find that there are two states for four charge-1/2 quasi-holes, even if we fixed
their positions. The two states are topologically degenerate (have the same energy
in N →∞ limit) [43]. The appearance of the topological degeneracy even with
fixed quasi-hole positions is a defining property of the non-Abelian statistics. In
the presence of the topological degeneracy, as we exchange quasi-holes, we will
generate non-Abelian Berry phases which also describe non-Abelian statistics.

More generally we find that there are Dn = 1
2 (
√

2)n topologically degenerate
states for n charge-1/2 quasi-holes, even if we fixed their positions [43]. We see
that there are

√
2 states per charge-1/2 quasi-hole! The

√
2 is called the quantum

dimension for the charge-1/2 quasi-hole. We see that the charge-1/2 quasi-hole has
a non-Abelian statistics, since for Abelian anyons, the quantum dimension is al-
ways 1.

3.6 Edge Excitations and Conformal Field Theory

Under the z→ eiθ z transformation, the N -particle ν = 1/2 Laughlin wave function
Ψ1/2 = P1/2(z1, . . . , zN)e

−∑ |zi |2/4 =∏
1≤i<j≤N(zi−zj )2e−

∑ |zi |2/4 transforms as

Ψ1/2→ eiSNθΨ1/2, with SN =N(N − 1). We call SN the angular momentum of the
Laughlin wave function (which is also the total power of zi ’s of the polynomial
P1/2(z1, . . . , zN). For interaction V1/2 =∑

δ(zi − zj ), the ν = 1/2 Laughlin wave
function is the only zero energy state with angular momentum N(N − 1) since
Ψ1/2(z1, . . . , zN) vanishes as zi→ zj . There are no zero energy states with angular
momentum less than SN . In fact, we believe that, for wave functions Ψ with angular
momentum less then SN ,

〈V1/2〉 =
∫ ∏

d2ziV1/2|Ψ (z1, . . . , zN)|2∫ ∏
d2zi |Ψ (z1, . . . , zN)|2 ≥� (54)

for a positive � and any N . The maximal � is called the energy gap for the inter-
action V1/2.

On the other hand, there are many zero energy states (〈V1/2〉 = 0) with angular
momentum bigger than SN . We call those zero energy states edge states, and denote
them as Ψedge. We can introduce a sequence of integers Dedge

L to denote the number
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of zero energy states with angular momentum SN +L. We will call Dedge
L the edge

spectrum.
To obtain the edge spectrum for the ν = 1/2 Laughlin state with interaction V1/2,

we note that the zero-energy edge states can be obtained by multiplying the Laughlin
wave function by a symmetric polynomial which does not reduce the order of zeros:

Ψedge = Psym
({zi}

)
Ψ1/2. (55)

Since the number of the symmetric polynomials with the total power of zi ’s equal
to L is given by the partition number pL, we find Dedge

L = pL. Such an argument
applies to any Laughlin states. So we believe that for ν = 1/m Laughlin the edge
spectrum is given by the partition numbers: Dedge

L = pL [44]:

L 0 1 2 3 4 5 6

D
edge
L 1 1 2 3 5 7 11

Psym 1
∑
zi (

∑
zi)

2 · · · · · · · · · · · ·∑
z2
i · · · · · · · · · · · ·

(56)

In large L limit, Dedge
L ≈ 1

4
√

3L
eπ
√

2L/3 ≈ eπ
√

2L/3.

For the ν = 1 Pfaffian state with the ideal Hamiltonian S[v0δ(z1 − z2)δ(z2 −
z3)− v1δ(z1− z2)∂z∗3δ(z2− z3)∂z3 ], ΨPf =A( 1

z1−z2

1
z3−z4

· · · )∏i<j (zi − zj ), is the
zero-energy state with the minimal total angular momentum SN . Other zero-energy
states with higher angular momenta are given by

Ψedge =A
(
Pany

({zi}
) 1

z1 − z2

1

z3 − z4
· · ·

)
Ψ1, (57)

where Pany is any polynomial. Now the counting is much more difficult, since lin-
early independent Pany’s may generate linearly dependent wave functions. We find,
for large even total boson number N , the edge spectrum is given by [45]

L 0 1 2 3 4 5 6

D
edge
L 1 1 3 5 10 16 28

(58)

We believe that, for the ν = 1 Pfaffian state, the edge spectrum in large L limit is
given by Dedge

L ≈ eπ
√

2L/3
√
c with c= 3/2, if N→∞ and L$N .

It turns out that the edge spectrum for ν = 1/m Laughlin state can be produced
by a central charge c= 1 CFT and the edge spectrum for ν = 1 Pfaffian state can be
produced by a central charge c = 3/2 CFT [44, 45]. This allows us to connect the
edge excitations of a FQH state to a CFT.

Using the quasi-hole wave functionΨ quasi-hole
ξ (z1, . . . , zN ) that describes a quasi-

hole at ξ , we can even calculate the correlation function of the quasi-hole operator.
We know that the circular quantum Hall droplet has a radius R = √2N/ν. The
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quasi-hole correlation function on the edge of the droplet is given by

Gquasi-hole(θ ′ − θ)

∝
∫ ∏

d2zi
[
Ψ

quasi-hole
ξ ′ (z1, . . . , zN)

]∗

×Ψ quasi-hole
ξ (z1, . . . , zN)

∣∣∣∣
ξ=Reiθ ;ξ ′=Reiθ ′

. (59)

We find that Gquasi-hole(θ − θ ′) has a form

Gquasi-hole(θ)∝ eiQν−1Nθ

(
1

1− e−iθ

)2h

(60)

where Q is the quasi-hole charge and h is a rational number. We will call h the
scaling dimension of the quasi-hole. For the ν = 1/m Laughlin state, we find that
h = 1

2m for the charge Q = 1/m quasi-hole. For the ν = 1 Pfaffian state, we find

that h = 1
2 for the charge-1 quasi-hole, and h = 3

16 for the charge-1/2 quasi-hole,
all in N→∞ limit [45, 46].

4 Pattern-of-Zeros Approach to FQH States and Symmetric
Polynomials

Using P1/2, P1/4, and PPf as examples, we have seen that symmetric polynomials
with infinite variables can have some amazing universal properties, once we defined
the norm of the infinite-variable polynomials to be

〈P |P 〉 =
∫ ∏

d2zi |P |2e−(1/2)
∑ |zi |2 . (61)

This suggests that it may be possible to come up with a definition of “infinite-
variable symmetric polynomials”. Such properly defined infinite-variable symmet-
ric polynomials should have those amazing universal properties. The proper defi-
nition also allow us to classify infinite-variable symmetric polynomials, which will
lead to a classification of FQH phases.

In this section, we will first discuss an attempt to define infinite-variable symmet-
ric polynomials through pattern of zeros. Then, we will try to provide a classification
of patterns of zeros. After that, we will use the patterns of zeros to calculate the uni-
versal properties of the corresponding infinite-variable symmetric polynomials.

4.1 What Is Infinite-Variable Symmetric Polynomial

The main difficulty to define symmetric polynomial with infinite variables is that the
number of the variables is not fixed. To overcome this difficulty, we will characterize
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the symmetric polynomials through their “local properties” that do not depend on
the number of the variables. One such “local property” is pattern of zeros.

4.1.1 What Is Pattern of Zeros?

We have seen that the different short-range interactions V (zi − zj ) in Hamiltonian

H =
N∑

i=1

−
(
∂zi −

B

4
zi
∗
)(

∂zi∗ +
B

4
zi

)
+

∑

i<j

V(zi − zj ) (62)

leads to different FQH states P(z1, . . . , zN)e−(1/4)
∑N

i=1 |zi |2 , which in turn leads to
different symmetric polynomials P(z1, . . . , zN).

One of the resulting polynomial P1/2 =∏
i<j (zi − zj )2 has a property that as

z1 ≈ z2, it has a second-order zero P1/2 ∝ (z1− z2)
2. Another resulting polynomial

P1/4 =∏
i<j (zi − zj )

4 has a property that as z1 ≈ z2, it has a fourth-order zero

P1/4 ∝ (z1 − z2)
4. The third resulting polynomial

PPf =A
(

1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN
)∏

i<j

(zi − zj ) (63)

has a property that as z1 ≈ z2, PPf has no zero, while as z1 ≈ z2 ≈ z3, PPf has a
second-order zero. We see that different polynomials can be characterized by differ-
ent patterns of zeros.

The above examples suggest the following general definition of pattern of zeros
for a symmetric polynomial P({zi}). Let zi = ληi + z(a), i = 1,2, . . . , a. In the
small λ limit, we have

P
({zi}

)= λSaP (
η1, . . . , ηa; z(a), za+1, za+2, . . .

)+O(
λSa+1) (64)

The sequence of integers {Sa} characterizes the symmetric polynomial P({zi}) and
is called the pattern of zeros of P . We note that SN happen to be the total power of
zi (or the total angular momentum) of P if the polynomial has N variables.

4.1.2 The Unique Fusion Condition

If the above induced P({ηi}; z(a), za+1, za+2, . . .), does not depend on the “shape”
{ηi}

P
({ηi}; z(a), za+1, za+2, . . .

)∝ P (
z(a), za+1, za+2, . . .

)
, (65)

we then say that the symmetric polynomial P({zi}) satisfy the unique fusion condi-
tion.
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4.1.3 Different Encodings of Pattern of Zeros Sa

There are many different ways to encode the sequence of integers Sa . For example,
we may use

la = Sa − Sa−1, a = 1,2,3, . . . (66)

to encode Sa , a = 1,2,3, . . .:

Sa =
a∑

i=1

li . (67)

Here we have assumed that S0 = 0. It turns out that li ≥ 0 and li ≤ li+1.
We may also use nl , l = 0,1,2, . . . to encode Sa . Here nl is the number of times

that the value l appears in the sequence li :

nl =
∞∑

i=1

δl,li . (68)

Let us list the pattern of zeros for some simple polynomials. For the ν = 1 integer
quantum Hall state P1 =∏

i<j (zi − zj ), the pattern of zeros is given by

S1, S2, . . . : 0,1,3,6,10,15, . . .

l1, l2, . . . : 0,1,2,3,4,5, . . . (69)

n0n1n2 · · · : 11111111 · · ·

We see that we can view l in nl as the label for the orbital zle−(1/4)|z|2 , and nl as the
occupation number on the lth orbital (see Sect. 3.1.1 and Fig. 4b).

The pattern of zeros of ν = 1/2 Laughlin state P1/2 is described by

S1, S2, . . . : 0,2,6,12,20,30, . . .

l1, l2, . . . : 0,2,4,6,8,10, . . . (70)

n0n1n2 · · · : 1010101010101010 · · ·
We see that nl has a periodic structure. Each unit cell (each cluster) has 1 particle
and 2 orbitals.

The pattern of zeros of ν = 1/4 Laughlin state P1/4 is described by

S1, S2, . . . : 0,4,12,24,40,60,84, . . .

l1, l2, . . . : 0,4,8,12,16,20, . . . (71)

n0n1n2 · · · : 100010001000100010001 · · ·
Again, nl has a periodic structure. Each unit cell (each cluster) has 1 particle and 4
orbitals.
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For the ν = 1 Pfaffian state PPf =A( 1
z1−z2

1
z3−z4

· · · )∏i<j (zi − zj ), the pattern
of zeros is given by

S1, S2, . . . : 0,0,2,4,8,12,18,24, . . .

l1, l2, . . . : 0,0,2,2,4,4,6,6, . . . (72)

n0n1n2 · · · : 2020202020202020202 · · ·
Now a cluster (unit cell) has 2 particles and 2 orbitals.

4.1.4 The Cluster Condition

Motivated by the above examples, here we would like to introduce a cluster condi-
tion for symmetric polynomials: an symmetric polynomial satisfies a cluster condi-
tion if nl is periodic. Let each unit cell contains n particles and m orbitals. In this
case, Sa has a form

Sa+kn = Sa + kSn + k(k − 1)nm

2
+ kma (73)

Since S1 = 0, we see that we can use a finite sequence (m
n
;S2, . . . , Sn) to describe

the pattern of zeros for symmetric polynomial satisfying the cluster condition.
We note that the filling fraction ν is given by the average number of particles per

orbital. Thus ν = n/m. We also call the cluster condition with n particles per unit
cell an n-cluster condition.

4.1.5 A Definition of Infinite-Variable Symmetric Polynomial

Now, we are ready to define the infinite-variable symmetric polynomial as a sym-
metric polynomial of infinite variables that satisfy the unique fusion condition and
the cluster condition. The cluster condition makes the N →∞ limit possible. [Or
more precisely, the infinite-variable symmetric polynomial is a sequence of sym-
metric polynomials of N variables (with N→∞), and those N -variable symmetric
polynomials each has the minimal total power of the variables that satisfy the unique
fusion condition and the cluster condition. We will loosely refer such a sequence of
N -variable symmetric polynomials as an infinite-variable symmetric polynomial.]

From the above discussions, we see that an infinite-variable symmetric poly-
nomial can be described by a finite amount of data (m

n
;S2, . . . , Sn). The ν = 1/2

Laughlin state, P1/2, satisfies the unique fusion condition and cluster condition. So
P1/2 is an infinite-variable symmetric polynomial described by a pattern of zero:
(m
n
;S2, . . . , Sn) = ( 2

1 ; ). Once we define the norm of those infinite-variable sym-
metric polynomials as Eq. (61), infinite-variable symmetric polynomials may have
some very interesting universal properties discussed in Sect. 3. We like to mention
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that the infinite-variable symmetric polynomials (also referred as symmetric func-
tions) are studied in mathematics in various contexts, such as representation theory,
combinatorics and algebraic topology [47, 48]. It is not clear if there is a relation
between our pattern-of-zeros point of view and those previous studies. But we like
to point out in our pattern-of-zeros approach, we only interested in symmetric poly-
nomials of N →∞ variables, and with the total power of the variables of order
O(N2). We are not interested in the infinite-variable symmetric polynomials with
all possible total power of the variables.

4.2 A Classification of Infinite-Variable Symmetric Polynomials

We have seen that each infinite-variable symmetric polynomial P({zi}) has a se-
quence of integers {Sa}—a pattern of zeros. But each sequence of integers {Sa} may
not correspond to an infinite-variable symmetric polynomial P({zi}). In this subsec-
tion, we will try to find all the conditions that a sequence {Sa}must satisfy, such that
{Sa} describes a infinite-variable symmetric polynomial. This may lead to a classi-
fication of infinite-variable symmetric polynomials (or FQH states) through pattern
of zeros.

4.2.1 Derived Polynomials

To find the conditions on {Sa}, it is very helpful to introduce the derived polynomi-
als. Let z1, . . . , za→ z(a) in an infinite-variable symmetric polynomial P({zi}) and
use the unique fusion condition:

P
({zi}

)→ λSaPderived
(
z(a), za+1, za+2, . . .

)+O(
λSa+1), (74)

we obtain a derived polynomial Pderived(z
(a), za+1, za+2, . . .) from the original poly-

nomial P . Repeating the process on other variables, we get a more general derived
polynomial Pderived(z

(a), z(b), z(c), . . .), where z(a), z(b), etc. are fusions of a vari-
ables, b variables, etc.

The zeros in derived polynomials are described by Da,b:

Pderived
(
z(a), z(b), z(c), . . .

)∼ (
z(a) − z(b))Da,bP ′derived

(
z(a+b) . . .

)+ · · · (75)

where z(a+b) = (z(a) + z(b))/2. Da,b =Db,a also characterize the pattern of zeros.
In effect, Da,b and Sa encode the same information:

Da,b = Sa+b − Sa − Sb, Sa =
a−1∑

b=1

Db,1. (76)
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Fig. 6 Wa,bc obtained by moving z(a) along a large loop around z(b) and z(c) counts the total
numbers of zeros of f (z(a)) in the loop. The crosses mark the off-particle zeros of f (z(a)) not at
z(b) and z(c)

4.2.2 The Concave Conditions on Pattern of Zeros

Since Da,b ≥ 0, we obtain the first concave condition:

�2(a, b)≡ Sa+b − Sa − Sb ≥ 0. (77)

Such a condition comes from the fusion of two clusters. We also have a second
concave condition:

�3(a, b, c)≡ Sa+b+c − Sa+b − Sb+c − Sa+c + Sa + Sb + Sc ≥ 0 (78)

from the fusion of three clusters.
To derive the second concave condition, let us fix all variables z(b), z(c), . . .

except z(a) in the derived polynomial Pderived(z
(a), z(b), z(c), . . .). Then the de-

rived polynomial Pderived(z
(a), z(b), z(c), . . .) can be viewed as a complex function

f (z(a)), which has isolated on-particle zeros at z(b), z(c), . . . , and possibly some
other off-particle zeros.

Let us move z(a) around both points z(b) and z(c). The phase of the complex
function f (z(a)) will change by 2πWa,bc where Wa,bc is an integer (see Fig. 6).
Since f (z(a)) has an order Dab zero at z(b) and an order Dac zero at z(c), the integer
Wa,bc satisfy

Wa,bc ≥Dab +Dac

because f (z(a)) may also have off-particle zeros. Now let z(b)→ z(c) to fuse into
z(b+c). In this limit Wa,bc becomes the order of zeros between z(a) and z(b+c):
Wa,bc =Da,b+c . Thus we obtain the following condition on Dab: Da,b+c ≥Dab +
Dac, which gives us the second concave condition (78).

We like to point out that the n-cluster condition has a very simple meaning in the
derived polynomial: f (z(a)) has no off-particle zeros if a = 0 mod n. So Da+b,n =
Da,n +Db,n which leads to the cluster condition (73).

4.2.3 Some Additional Conditions

The two concave conditions are the main conditions on {Sa}. We also have another
condition

�2(a, a)= even (79)
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since the polynomial is a symmetric polynomial. It turns out that we need yet an-
other a condition

�3(a, b, c)= even. (80)

It is hard to prove this mysterious condition using elementary methods. Using the
connection between the symmetry polynomial and CFT (or vertex algebra), we
find that the condition �3(a, b, c)= even is directly related to the requirement that
the fermionic operators have half-integer scaling dimensions and bosonic operators
have integer scaling dimensions [35].

We conjecture that the patterns of zeros (m
n
;S2, . . . , Sn) that satisfy the above

conditions describe infinite-variable symmetric polynomials [25]. Those (m
n
;S2,

. . . , Sn) “classify” infinite-variable symmetric polynomials and FQH states with fill-
ing fraction ν = n/m.

4.2.4 Primitive Solutions for Pattern of Zeros

Let us list some patterns of zeros, (m
n
;S2, . . . , Sn), that satisfy the above conditions.

We note that the conditions are semi-linear in (m
n
;S2, . . . , Sn). So, if (m

n
;S2, . . . , Sn)

and (m
′

n′ ;S′2, . . . , S′n) are solutions, then (m
′′

n′′ ;S′′2 , . . . , S′′n) = (m
n
;S2, . . . , Sn) +

(m
′

n′ ;S′2, . . . , S′n) is also a solution. Such a result has the following meaning: Let
P({zi}), P ′({zi}), and P ′′({zi}) are three symmetric polynomials described by pat-

tern of zeros (m
n
;S2, . . . , Sn), (m

′
n′ ;S′2, . . . , S′n), and (m

′′
n′′ ;S′′2 , . . . , S′′n) respectively,

we then have P ′′({zi})= P({zi})P ′({zi}). Such a property allow us to introduce the
notion of primitive pattern of zeros as the patterns of zeros that cannot to written as
the sum of two other patterns of zeros. In this section, we will only list the primitive
patterns of zeros.

1-cluster state: ν = 1/k Laughlin state

P1/k :
(
m

n
;
)
=

(
k

1
;
)
,

(n0, . . . , nk−1)= (1,0, . . . ,0).
(81)

2-cluster state: Pfaffian state (Z2 parafermion state)

P2/2;Z2 :
(
m

n
;S2

)
=

(
2

2
;0

)
,

(n0, . . . , nm−1)= (2,0)
(82)

3-cluster state: Z3 parafermion state

P3/2;Z3 :
(
m

n
;S2, S3

)
=

(
2

3
;0,0

)
,

(n0, . . . , nm−1)= (3,0)
(83)
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4-cluster state: Z4 parafermion state

P4/2;Z4 :
(
m

n
;S2, . . . , S4

)
=

(
2

4
;0,0,0

)
,

(n0, . . . , nm−1)= (4,0),
(84)

5-cluster states (we have two of them): Z5 (generalized) parafermion states

P5/2;Z5 :
(
m

n
;S2, . . . , S5

)
=

(
2

5
;0,0,0,0

)
,

(n0, . . . , nm−1)= (5,0)
(85)

P
5/8;Z(2)5

:
(
m

n
;S2, . . . , S5

)
=

(
8

5
;0,2,6,10

)
,

(n0, . . . , nm−1)= (2,0,1,0,2,0,0,0)
(86)

6-cluster state:

P6/2;Z6 :
(
m

n
;S2, . . . , S6

)
=

(
2

6
;0,0,0,0,0

)
,

(n0, . . . , nm−1)= (6,0)
(87)

7-cluster states (we have four of them):

P7/2;Z7 :
(
m

n
;S2, . . . , S7

)
=

(
2

7
;0,0,0,0,0,0

)
,

(n0, . . . , nm−1)= (7,0)
(88)

P
7/8;Z(2)7

:
(
m

n
;S2, . . . , S7

)
=

(
8

7
;0,0,2,6,10,14

)
,

(n0, . . . , nm−1)= (3,0,1,0,3,0,0,0)
(89)

P
7/18;Z(3)7

:
(
m

n
;S2, . . . , S7

)
=

(
18

7
;0,4,10,18,30,42

)
,

(n0, . . . , nm−1)= (2,0,0,0,0,1,0,0,0,2,0,0,0,0,0)
(90)

P7/14;C7 :
(
m

n
;S2, . . . , S7

)
=

(
14

7
;0,2,6,12,20,28

)
,

(n0, . . . , nm−1)= (2,0,1,0,1,0,1,0,2,0,0,0,0,0)
(91)

4.2.5 How Good Is the Pattern-of-Zeros Classification?

How good is the pattern-of-zeros classification? Not so good, and not so bad.
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Clearly, every symmetric polynomial P corresponds to a unique pattern of zeros
{Sa}. But only some patterns of zeros correspond to a unique symmetric polynomial.
So the pattern-of-zeros classification is not so good. It appears that all the primitive
pattern of zeros correspond to a unique a unique symmetric polynomial. Therefore,
the pattern-of-zeros classification is not so bad.

We also know that some composite patterns of zeros correspond a unique sym-
metric polynomial, while other composite patterns of zeros do not correspond a
unique symmetric polynomial. Let Pni be a symmetric polynomial described by a
primitive pattern of zeros with an ni -cluster. It appear that P =∏

i Pni will have
a pattern of zeros that corresponds a unique symmetric polynomial if ni ’s has no
common factor.

So only for certain patterns of zeros, the data {m
n
;S2, . . . , Sn} contain all the in-

formation to fix the symmetric polynomials. In general, we need more information
than {m

n
;S2, . . . , Sn} to fully characterize symmetry polynomials of infinite vari-

ables.

4.3 Topological Properties from Pattern of Zeros

For those patterns of zeros that uniquely characterize the symmetry polynomials of
infinite variables (or FQH wave functions), we should be able to calculate the uni-
versal properties of the FQH states from the data (m

n
;S2, . . . , Sn). Those universal

properties include:

• The filling fraction ν.
• Topological degeneracy on torus and other Riemann surfaces
• Number of quasiparticle types
• Quasiparticle charges
• Quasiparticle scaling dimensions
• Quasiparticle fusion algebra
• Quasiparticle statistics (Abelian and non-Abelian)
• The counting of edge excitations (central charge c and spectrum)

At moment, we can calculate many of the above universal properties from the
pattern-of-zeros data (m

n
;S2, . . . , Sn). For example, the filling fraction ν is given by

ν = n/m. But we still do not know how to calculate scaling dimensions and statistics
for some of the quasiparticles.

In this subsection, we develop a pattern-of-zeros description of the quasiparticle
excitations in FQH states. This will allow us to calculate many universal properties
from the pattern of zeros.

4.3.1 Pattern of Zeros of Quasiparticle Excitations

A quasiparticle is a defect in the ground state wave function P({zi}). It is a place
where we have more power of zeros. For example, the ground state wave function



58 X.-G. Wen and Z. Wang

Fig. 7 The graphic picture of
the pattern of zeros for a
quasiparticle

of ν = 1/2 Laughlin state is given by
∏
i<j (zi − zj )2. The state with a quasiparticle

at ξ is given by
∏
i (zi − ξ)

∏
i<j (zi − zj )2 (see Sect. 3.2). As we bring several zi ’s

to ξ ,
∏
i (zi− ξ)

∏
i<j (zi− zj )2 vanishes according to a pattern of zeros. In general,

each quasiparticle labeled by γ in a FQH state can be quantitatively characterized
by distinct pattern of zeros (see Fig. 7).

Let Pγ (ξ ; {zi}) be the wave function with a quasiparticle γ at z= ξ . To describe
the structure of the zeros as we bring bosons to the quasiparticle, we set zi = ληi+ξ ,
i = 1,2, . . . , a and let λ→ 0:

Pγ
(
ξ ; {zi}

)= λSγ ;a P̃γ
(
z(a) = ξ, za+1, za+2, . . .

)+O(
λSa+1) (92)

Sγ ;a is the order of zeros of Pγ (ξ ; zi) when we bring a bosons to ξ . The sequence of
integers {Sγ ;a} is the quasiparticle pattern of zeros that characterizes the quasipar-
ticle γ . We note that the ground-state pattern of zeros {Sa} correspond to the trivial
quasiparticle γ = 0: {S0;a} = {Sa}.

To find the allowed quasiparticles, we simply need to find (i) the conditions that
Sγ ;a must satisfy and (ii) all the Sγ ;a that satisfy those conditions.

4.3.2 Conditions on Quasiparticle Pattern of Zeros Sγ ;a

The quasiparticle pattern of zeros also satisfy two concave conditions

Sγ ;a+b − Sγ ;a − Sb ≥ 0, (93)

Sγ ;a+b+c − Sγ ;a+b − Sγ ;a+c − Sb+c + Sγ ;a + Sb + Sc ≥ 0 (94)

and a cluster condition

Sγ ;a+kn = Sγ ;a + k(Sγ ;n +ma)+mnk(k − 1)

2
(95)

The cluster condition implies that a finite sequence (Sγ ;1, . . . , Sγ ;n) determines the
infinity sequence {Sγ ;a}.

We can also use the sequence lγ ;a = Sγ,a − Sγ,a−1 or nγ ;l =∑
i=1 δl,lγ ;i to de-

scribe the quasiparticle sequence Sγ ;a . The nγ ;l description is simpler and reveals
physical picture more clearly than Sγ ;a .

4.3.3 The Solutions for the Quasiparticle Patterns of Zeros

We can find all (Sγ ;1, . . . , Sγ ;n) that satisfy the above concave and cluster conditions
through numerical calculations. This allow us to obtain all the quasiparticles.
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For the ν = 1 Pfaffian state (n= 2 and m= 2) described by

S1, S2, . . . : 0,0,2,4,8,12,18,24, . . .

n0n1n2 · · · : 2020202020202020202 · · · , (96)

we find that the quasiparticle patterns of zeros are given by (expressed in terms of
nγ,l)

nγ ;0nγ ;1nγ ;2 · · · : 2020202020202020202 · · · Qγ = 0

nγ ;0nγ ;1nγ ;2 · · · : 0202020202020202020 · · · Qγ = 1

nγ ;0nγ ;1nγ ;2 · · · : 1111111111111111111 · · · Qγ = 1/2

(97)

The above three pattern of zeros are not all the solutions of the quasiparticle
conditions. However, all other quasiparticle solutions can be obtained from the
above three by removing some bosons. Those quasiparticle solutions are equiva-
lent to one of the above three solutions. For example nγ ;0nγ ;1 · · · = 102020202 · · · ,
nγ ;0nγ ;1 · · · = 002020202 · · · , etc. are also quasiparticle solutions which are equiv-
alent to nγ ;0nγ ;1 · · · = 202020202 · · · . Therefore, we find that the ν = 1 Pfaffian
state has three types of quasiparticles.

We note that the ground state degeneracy on torus is equal to the number of
quasiparticle types. So the ν = 1 Pfaffian state has a three-fold degeneracy on a
torus. The charge of quasiparticles can be also calculated from the quasiparticle
pattern of zeros:

Qγ = 1

m

n∑

a=1

(lγ ;a − la)= 1

m
(Sγ ;n − Sn). (98)

Let us list the number of quasiparticle types calculated from pattern of zeros for
various FQH states. For the parafermion states Pν=n/2;Zn (m= 2),

P2/2;Z2 P3/2;Z3 P4/2;Z4 P5/2;Z5 P6/2;Z6 P7/2;Z7 P8/2;Z8 P9/2;Z9 P10/2;Z10

3 4 5 6 7 8 9 10 11

For the parafermion states Pν=n/(2+2n);Zn (m= 2+ 2n)

P2/6;Z2 P3/8;Z3 P4/10;Z4 P5/12;Z5 P6/14;Z6 P7/16;Z7 P8/18;Z8 P9/20;Z9 P10/22;Z10

9 16 25 36 49 64 81 100 121

For the generalized parafermion states P
ν=n/m;Z(k)n

P
5/8;Z(2)5

P
5/18;Z(2)5

P
7/8;Z(2)7

P
7/22;Z(2)7

P
7/18;Z(3)7

P
7/32;Z(3)7

P
8/18;Z(3)8

P
9/8;Z(2)9

24 54 32 88 72 128 81 40

where k and n are co-prime.
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For the composite parafermion states P
n1/m1;Z(k2)n1

P
n2/m2;Z(k2)n2

obtained as prod-

ucts of two parafermion wave functions

P2/2;Z2P3/2;Z3 P3/2;Z3P4/2;Z4 P2/2;Z2P5/2;Z5 P2/2;Z2P5/8;Z(2)5

30 70 63 117

where n1 and n2 are co-prime. The inverse filling fractions of the above composite
states are 1

ν
= 1

ν1
+ 1

ν2
= m1

n1
+ m2

n2
. More results can be found in [26].

All those results from the pattern of zeros agree with the results from parafermion
CFT [27]:

# of quasiparticles= 1

ν

∏

i

ni(ni + 1)

2
(99)

for the generalized composite parafermion state

P =
∏

i

P
ni/mi ;Z(ki )ni

, {ni} co-prime, (ki, ni) co-prime. (100)

The filling fraction for such generalized composite parafermion state is given by
ν = (∑i

mi
ni
)−1.

4.3.4 Quasiparticle Fusion Algebra: γ1γ2 = ∑
γ3

N
γ3
γ1γ2γ3

When we fuse quasiparticles γ1 and γ2 together, we can get a third quasiparticle
γ3. However, for non-Abelian quasiparticles, the fusion can be more complicated.
Fusing γ1 and γ2 may produce several kind of quasiparticles. Such kind of fusion is
described by quasiparticle fusion algebra (see Fig. 8): γ1γ2 =∑

γ3
N
γ3
γ1γ2γ3, where

N
γ3
γ1γ2 are non-negative integers.
To calculate the fusion coefficients Nγ3

γ1γ2 from the pattern of zeros, let us put the
quasiparticle γ1 at z= 0. Far away from z= 0, such a quasiparticle has a pattern of
zeros nγ1;l (in the occupation representation). We then insert a quasiparticle γ2 at
z = R for a large R. At z = r % R, the occupation becomes the occupation of the
quasiparticle γ3: nγ3;l . We see that the fusion of γ2 changes the occupation pattern
from nγ1;l to nγ3;l :

(101)

So the quasiparticle γ2 becomes a “domain wall” between the γ1 occupation pattern
and the γ3 occupation pattern [49].

From the above domain wall structure, we can see only nγ1;l and nγ3;l , but we
cannot see nγ2;l . But this is enough for us. We are able to find a condition on nγ2;l
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Fig. 8 The graphic picture of the fusion of two quasiparticles. Each box represent a many-boson
wave function. In the left box, we have quasiparticle γ1 and γ2 described by patterns of zeros Sγ1;a
and Sγ2;a . Far away from the two quasiparticles, the wave function may contain several different
patterns of zeros Sγ3;a that correspond to several different quasiparticle types γ3. So we say that γ1
and γ2 may fuse into several different types of quasiparticles labeled by γ3

so that it can induce a domain wall between nγ1;l and nγ3;l [27]:

b∑

j=1

(
lsc
γ1;j+a + lsc

γ2;j+c
)≤

b∑

j=1

(
lsc
γ3;j+a+c + lsc

j

)
(102)

for any a, b, c ∈ Z+, where lsc
γ ;a = lγ ;a − m(Qγ+a−1)

n
.

Solving the above equation allows us to determine when Nγ3
γ1γ2 can be non-zero.

If we further assume that Nγ3
γ1γ2 = 0,1, then the fusion algebra can be determined.

Knowing Nγ3
γ1γ2 allows us to determine the ground state degeneracies of FQH state

on any closed Riemann surfaces.
We like to mention that for the generalized composite parafermion states which

have a CFT description, the pattern-of-zeros approach and the CFT approach give
rise to the same fusion algebra. However, the pattern-of-zeros approach applies to
other FQH states whose CFT may not be known.

5 The Vertex-Algebra + Pattern-of-Zeros Approach

5.1 Z-Graded Vertex Algebra

The symmetric polynomial P({zi}) and the corresponding derived polynomial
Pderived({z(ai )i }) can be expressed as correlation functions in a vertex algebra:

P
({zi}

)=
〈∏

i

V (zi)

〉
, Pderived

({
z
(a)
i

})=
〈∏

i,a

Va
(
z
(a)
i

)〉

Va(z)= V a, VaVb = Va+b.
(103)

The vertex algebra is generated by vertex operator V (z) and is described by the
following operator product expansion:

Va(z)Vb(w)= Cab

(z−w)ha+hb−ha+b Va+b(w)+ · · · (104)
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where ha is the scaling dimension of Va and Cab the structure constant of the vertex
algebra. Such a vertex algebra is a Z-graded vertex algebra.

The pattern of zeros Sa discuss before is directly related to ha :

ha+b − ha − hb =Da,b = Sa+b − Sa − Sb (105)

The n-cluster condition implies that ha ∝ a2 if a = 0 mod n. This allows us to ob-
tain

ha = Sa − aSn

n
+ am

2
(106)

We see that the pattern of zeros Sa only describe the scaling dimensions of the
vertex operators. It does not describe the structure constants Ca,b . So a more com-
plete characterization of FQH wave functions (symmetric polynomials) is given by
(m
n
;Sa;Cab, . . .). But (m

n
;Sa;Cab, . . .) may be an overkill. We like to find out what

is the minimal set of date that can completely characterize the FQH wave functions
(or the symmetric polynomials).

5.2 Zn-Vertex Algebra

If the above Z-graded vertex algebra satisfies the n-cluster condition, then it can be
viewed a Zn-vertex algebra ⊗ a U(1) current algebra:

Va(z)=ψa(z)eiaφ(z)
√
m/n (107)

where j = ∂φ generates the U(1) current algebra and ψa generates the Zn-vertex
algebra:

ψa(z)ψb(w)= Cab

(z−w)hsc
a +hsc

b −hsc
a+b

ψa+b(w)+ · · · (108)

where ψn = 1 as the result of the n-cluster condition. The scaling dimension of
ψa(z) is

hsc
a = ha −

a2m

2n
= Sa − aSn

n
+ am

2
− a2m

2n
, hsc

a = hsc
a+n (109)

The two sets of data (m
n
;S2, . . . , Sn) and (m

n
;hsc

1 , . . . , h
sc
n−1) completely determine

each other:

Sa = hsc
a − ahsc

1 +
a(a − 1)m

2n
. (110)

So we can also use (m
n
;hsc

1 , . . . , h
sc
n−1) to describe the pattern of zeros.
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From the pattern-of-zeros consideration, we find that hsc
a must satisfy

Sa = hsc
a − ahsc

1 +
a(a − 1)m

2n
= integer≥ 0

hsc
a+b − hsc

a − hsc
b +

abm

n
=Dab = integer≥ 0 (111)

hsc
a+b+c − hsc

a+b − hsc
b+c − hsc

a+c + hsc
a + hsc

b + hsc
c

=�3(a, b, c)= even integer≥ 0 (112)

But the above conditions are only on hsc
a . To get the conditions on Cab , we can

use the generalized Jacobi identity [50] to obtain a set a non-linear equations for
(hsc
a ,Cab, . . .) [35]. Those conditions may be sufficient and necessary which may

lead to a classification of Zn-vertex algebra.
For some simple pattern of zeros hsc

a , we are able to build a closed set of non-
linear equations for (hsc

a ,Cab, . . .), which lead to a well defined Zn-vertex algebra.
This allows us to calculate quasiparticle scaling dimensions, quasiparticle statistics,
central charge (edge spectrum) [35], . . . We would like to point out that in [32] and
[34], a very interesting approach based the pattern of zeros and modular transforma-
tion of torus is proposed, that allows us to calculate the fractional statistics of some
quasiparticles directly from the pattern-of-zeros data. We also like to point out that
finding valid (hsc

a ,Cab, . . .) corresponds to finding a well defined Zn vertex algebra.
Finding the quasiparticle patterns of zeros corresponds to finding the representations
of the Zn vertex algebra.

But at moment, we cannot handle more general pattern of zeros hsc
a , in the sense

that we have some difficulties to obtain a closed set of non-linear algebraic equations
for (hsc

a ,Cab, . . .). We hope that, after some further research, the pattern-of-zeros
approach may lead to a classification of Zn-vertex algebra, which in turn lead to a
classification of symmetric polynomials and FQH states.

6 Summary

Although still incomplete, the pattern-of-zeros approach provides quite a power-
ful way to study symmetric polynomials with infinite variables and FQH states. It
connects several very different fields, such as strongly correlated electron systems,
topological quantum field theory, CFT (for the edge states), modular tensor category
theory (for the quasiparticle statistics), and maybe a new field of infinite-variable
symmetric polynomial. This article only reviews the first step in this very exciting
direction. More exciting results are yet to come.
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Virasoro Central Charges for Nichols Algebras

A.M. Semikhatov

Abstract A Virasoro central charge can be associated with each Nichols algebra
with diagonal braiding in a way that is invariant under the Weyl groupoid action.
The central charge takes very suggestive values for some items in Heckenberger’s
list of rank-2 Nichols algebras. In particular, this might be viewed as an indication of
the existence of reasonable logarithmic extensions of W3 ≡WA2, WB2, and WG2
models of conformal field theory. In the W3 case, the construction of an octuplet
extended algebra—a counterpart of the triplet (1,p) algebra—is outlined.

1 Introduction

In [1], we described a paradigm treating screening operators in two-dimensional
conformal field theory as a braided Hopf algebra, a Nichols algebra [2–9]. This im-
mediately suggests that the inverse relation may also exist. Is any finite-dimensional
Nichols algebra with diagonal braiding an algebra of screenings in some conformal
model? This is a fascinating problem, especially considering the recent remarkable
development in the theory of Nichols algebras—originally a “technicality” in An-
druskiewitsch and Schneider’s program of classification of pointed Hopf algebras,
which has grown into a beautiful theory in and of itself (in addition to the papers
cited above and the references therein, also see [8, 10–17]). Diagonal braiding is
assumed in what follows.

As many “inverse” problems, that of identifying a conformal field model behind
a given Nichols algebra is not necessarily well defined. It is of course well known
that screenings can be used to define models of conformal field theory; in particular,
defining logarithmic models as kernels of screening [18] turned out to be especially
useful. But passing from a Nichols algebras to screenings involves various ambi-
guities. Nevertheless, the central charges associated with Nichols algebras in what
follows have the nice property of being invariant under the Weyl groupoid action—
the natural “symmetry” up to which Nichols algebras are classified [10, 19, 20].

To proceed beyond the central charge identification, I restrict myself to Nichols
algebras of rank two (already a fairly large number in terms of the possible confor-
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mal models). All of these were listed by Heckenberger [21, 22] (the general clas-
sification, for any rank, was achieved in [7] and was reproduced in a different and
independent way in [15–17]). These notes are in fact a compilation of the original
Heckenberger’s list with explicit results on the presentation of some Nichols alge-
bras (obtained in [15] for the standard type and in [23] in several nonstandard cases),
and with several CFT constructions added. The extended algebra of a logarithmic
model—the octuplet algebra extending the W3 algebra—is offered in only one case;
the other CFT constructions are merely a starting point for finding extended alge-
bras.1

For the Nichols algebra B(X) of a θ -dimensional braided linear space (X,Ψ )
(a rank-θ Nichols algebra), we fix a basis (Fi)1≤i≤θ inX that diagonalizes the braid-
ing Ψ :X⊗X→X⊗X,

Ψ (Fi ⊗ Fj )= qi,jFj ⊗ Fi, (1)

and call the matrix (qi,j )1≤i,j≤θ the braiding matrix.
The relation to conformal field theory is based on representing the Fi as screening

operators

Fi =
∮
eαi .ϕ (2)

acting in a space of bosonic fields (or simply “bosons”). Here, ϕ(z) = (ϕ1(z), . . . ,

ϕθ (z)) is a θ -component boson field with OPEs (16) (Appendix A), the dot denotes
Euclidean scalar product, and αi ∈ C

θ are such that the screenings have the self-
braidings and the monodromies coincident with those in (1):2

eiπαi .αi = qi,i ,
e2iπαi .αj = qi,j qj,i , i �= j.

(3)

The ambiguities inherent in passing from a braiding matrix to screenings realized
in terms of free bosons are numerous. Already the “θ -boson space” on which the Fi
act can be chosen differently, e.g., including or not including exponentials eω.ϕ(z),
where ω ranges a lattice in C

θ . Furthermore, solving relations (3) for αi ∈ C
θ in-

volves taking logarithms, which introduces arbitrary integer parameters.
And yet the idea to look for a conformal model corresponding to a given Nichols

algebra is not altogether meaningless because the Virasoro central charge is invari-
ant under the Weyl groupoid action. I go into some detail here because the statement
implicitly refers to a procedure to deal with the ambiguities such that the invariance
is nevertheless ensured.

1Since the submission of this paper, some progress has been achieved in the cases described in 2.2
and 3.1 in what follows [60].
2Notably, the conditions on the braiding matrix elements selecting a Nichols algebra involve only
the self-braidings qi,i and the monodromies qi,j qj,i for i �= j .
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Whenever the αi are linearly independent, the screenings in (2) uniquely define
a Virasoro algebra in their centralizer in the space of differential polynomials in the
∂ϕj (z) (∂ = ∂/∂z). The general case is considered in Appendix A, and for θ = 2,
for example, the central charge of Virasoro algebra is

c = 2− 3
(((

4+ (α1.α1)(α2.α2)
)
(α1 − α2).(α1 − α2)

+ 4(α1 − α2).
(
(α1.α1)α2 − (α2.α2)α1

))

/(
(α1.α1)(α2.α2)− (α1.α2)

2)
)
. (4)

On the Nichols algebra side, the Weyl groupoid action is defined as follows [10, 19,
20, 24–26]. There exists a generalized Cartan matrix (ai,j )1≤i,j≤θ such that ai,i = 2
and

q
ai,j
i,i = qi,j qj,i or q

1−ai,j
i,i = 1 (5)

holds for each pair i �= j . The Weyl groupoid is generated by pseudoreflections
acting on the set of braiding matrices and defined for any k, 1≤ k ≤ θ . The reflected
braiding matrix has the entries

R
(k)(qi,j )= qi,j q−ak,ji,k q

−ak,i
k,j q

ak,iak,j
k,k . (6)

It may or may not have the same generalized Cartan matrix.3 The use of this tool
has remarkably resulted in the classification of Nichols algebras with diagonal braid-
ing [7].

With the screening momenta αi ∈ C
θ , 1 ≤ i ≤ θ , defined such that (3) holds,

condition (5) is “lifted” to the scalar products as the condition

2αi.αj = ai,j αi .αi or (1− ai,j )αi .αi = 2 (7)

to be satisfied for each pair i �= j . Several particular choices have been made in
writing this (for example, the 2, not some other even integer, in the second relation).

The Weyl reflections are now lifted to the scalar products by “naively taking the
logarithm” of (6) (which amounts to actual pseudoreflections in C

θ ):

R
(k)(αi .αj )= αi.αj − ak,jαi .αk − ak,iαk.αj + ak,iak,j αk.αk. (8)

Weyl-reflecting the central charge amounts to replacing each αi.αj with R(k)(αi .αj )

in the system of equations that defines the central charge (see Appendix A).

3If the diagonal braiding is of Cartan type, then Weyl reflections preserve the Cartan matrix. If a
generalized Cartan matrix (not of Cartan type) is the same for the entire class of Weyl-reflected
braided matrices, then such a generalized Cartan matrix and the braiding matrix are said to belong
to the standard type. Nonstandard braidings do exist [15, 27].
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Theorem The central charge of the Virasoro algebra centralizing θ screenings in
the θ -boson space is invariant under (8) if conditions (7) hold.

This is proved in Appendix A; for example, in the rank-2 case (see (4)), the
Weyl-reflected central charge is expressed rather explicitly as

R
(1)(c)− c = 3

(α1.α1)(α2.α2)− (α1.α2)2

× (2α1.α2 − a1,2α1.α1)
(
(a1,2 − 1)α1.α1 + 2

)

× (
a2

1,2α1.α1 − a1,2α1.α1 − 2a1,2α1.α2 + 2α2.α2 + 2a1,2 − 4
)
.

The product (2α1.α2−a1,2α1.α1)((a1,2−1)α1.α1+2) vanishes whenever (7) holds
for i = 1 and j = 2, and hence c is indeed invariant under R(1); the invariance under
R(2) is verified similarly.

1.1 From Virasoro to Extended Algebras

The central charge value alone does not specify a conformal field theory uniquely.
In “good” cases, however—when the central charge found from (4) is a function
of a (discrete) parameter—the form of this dependence does suggest what type of
operators extend the Virasoro algebra and therefore what the resulting conformal
model is; and the centralizer of the screenings then turns out to be sufficiently am-
ple for an interesting conformal field theory to live in it. An exemplary case is the
W3 algebra, which centralizes two screenings associated with a braiding matrix such
that q1,1 = q2,2 = q and q1,2q2,1 = q−1, with a primitive root of unity q . From the
logarithmic perspective, this W3 algebra is a nonextended algebra, playing the same
role in relation to an extended algebra as the Virasoro algebra plays in relation to the
triplet algebras of (p,1) [28–32] and (p,p′) [33] logarithmic models. Specifically
in theW3 case, the extended algebra is the octuplet algebra described in Appendix B.
Similar constructions are expected in other good cases; I am optimistic about the fact
that the same generalized Dynkin diagram gives rise to a finite-dimensional Nichols
algebra and to an interesting conformal field theory. The intricate machinery under-
lying the finite dimensionality of the corresponding Nichols algebra may manifest
itself in constructing new logarithmic models.4

In what follows, I therefore reproduce Heckenberger’s list of rank-2 finite-
dimensional Nichols algebras [21, 22], with the only difference that I enumer-
ate, not itemize the subitems. For several items, I also add the presentations

4Recall that rational conformal field theories are generally defined as the cohomology of a complex
associated with the screenings, whereas logarithmic models are defined by the kernel (cf. [18, 32–
36]). In particular, this allows interesting logarithmic conformal models to exist in the cases where
the rational model is nonexistent (the (p,1) series) or trivial (the (2,3) model).
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known from [15] and explicitly borrowed from [23], including the case number
in [23]. From the Nichols-algebra data, I move toward conformal field theory by
analyzing the conditions on the screening momenta. When it is clear what cur-
rent algebra extends the Virasoro algebra with the central charge obtained from (4),
I recall the explicit construction, presenting it in the form that manifestly refers to
the corresponding pair of screenings (once again, all extended algebras except the
one in Appendix B are not logarithmic extensions, but rather starting points for such
extensions).

1.2 Points to Note

1. In conformal field theory, fermionic screenings are often interesting. Their
Nichols-algebra counterparts are the diagonal entries −1 in braiding matrices.
But given a qi,i = −1 and trying to reconstruct a screening in general leads to
the condition αi.αi = 1+ 2m on the screening momentum, with m ∈ Z. For the
corresponding screening current f (z) = eαi .ϕ(z), it then follows that f (z)f (w)
develops a (1+2m)th-order zero as z→w. The cases where this zero is actually
a pole are somewhat pathological from the CFT standpoint; as regards the cases
of a zero of an order≥ 3, I am unaware of any such examples of screenings. Only
m= 0 is a “good” value. Remarkably, solving conditions (7) with qi,i =−1 has
the tendency to select the value m = 0, thus ensuring a true fermionic screen-
ing.

2. Other integers appearing in “taking the logarithms” are not disposed of that
easily. There are solutions of (7) where these integers vanish (and the central
charge depends on another integer parameter, the order of a root of unity);
such solutions are referred to as “regular” in what follows. But there also ex-
ist “peculiar” solutions of (7) where some of these parasitic integers persist,
and which have somewhat reduced chances to correspond to interesting CFT
models. In fact, some peculiar solutions are eliminated already by the con-
ditions in Heckenberger’s list: in some items, the order of the corresponding
root of unity must not be too small, and the peculiar solutions do require just
one of those excluded values. This might suggest that peculiar solutions should
somehow be eliminated altogether, but if so, then I have overlooked the argu-
ment.

3. Things get worse with the many items in the list that do not involve a free dis-
crete parameter such as the order of a root of unity. Isolated central charge values
are by no means illuminating, and remain entirely unsuggestive when expanded
into families by the occurrence of “parasitic integers.”

The unwieldiness of the “peculiar” central charges also thwarted my original
intention to provide each item in the list with a central charge. This can be done,
but the results are not indicative of anything. The corresponding items in the list
are therefore left in their original form given in [21, 22].
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4. In the “regular” cases, I choose a primitive pth root of unity as e2iπ/p with an
integer p. This might unnecessarily restrict the generality, but the cases that fol-
low with this choice are already interesting. In “peculiar” cases, by contrast, I try
to work out the cases with e2iπr/p , where r is coprime with p. The r param-
eter sometimes survives till the central charge, but that’s where the story ends,
because I do not construct any current algebra generators beyond Virasoro in
peculiar cases.

Mostly, I take the logarithm of relations such as eiπx = e2iπr/s (where x is
typically a linear combination of scalar products) “honestly,” as x = 2r

s
+ 2�,

� ∈ Z. In some cases, the ensuing dependence on � turns out to be “under con-
trol” (something like a shift of the level of an affine Lie algebra with which the
corresponding conformal field theory is associated—which interestingly corre-
sponds to a twist equivalence of the braiding matrix), and I sometimes omit it.

5. Strictly speaking, identifying a CFT model from its central charge that depends
on a parameter is an ill-defined procedure in the sense that given a central
charge c = f (p) and redefining the parameterization by an arbitrary function,
p′ = g(p), changes the “functional form” of c arbitrarily. It is tacitly understood
that some “natural” parameterizations are considered and very limited reparam-
eterizations are allowed (typically those that are known to occur in some CFT
constructions).

1.3 Notation

The notation

R� = the set of primitive �th roots of unity

is copied from [21, 22] as part of the defining conditions in the list items. A braiding

matrix (1) is encoded in a generalized Dynkin diagram ◦
m1,2q1,1

◦
q2,2

, where m1,2 =
q1,2q2,1. The A2, B2, and G2 Cartan matrices are

( 2 −1
−1 2

)
,
( 2 −2
−1 2

)
, and

( 2 −3
−1 2

)
.

Vectors α,β ∈C
2 are the momenta of two screenings in what follows (α1 and α2 in

the nomenclature of (2)).

2 The List, Item 1

The defining conditions are

q12q21 = 1 and q11, q22 ∈
∞⋃

a=2

Ra.
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This is the “trivial” A1 × A1 case. The corresponding CFT model is the product
(p′,1)× (1,p) of two “(p,1)” models [32, 37], or, in the degenerate case where α
and β are collinear (and hence only one boson is needed), the (p′,p)model [33, 38].

3 The List, Items 2.∗
The defining conditions are

q12q21q22 = 1 and q12q21 �= 1,

plus any of conditions 2.1–2.7. In terms of the momenta α,β ∈C
2 of the screenings,

the common condition for all these cases takes the form

2α.β + β.β = 2m (m ∈ Z).

2.1 (5.7(1)[23]) q11q12q21 = 1, q12q21 ∈⋃∞
a=2Ra , Cartan type A2, ◦

q−1q

◦
q

.
In terms of scalar products, the conditions are

α.α + 2α.β = 2n (n ∈ Z), 2α.β =− 2

p
+ 2j, |p| ≥ 2 (j ∈ Z).

The braiding matrix (which is stable under Weyl reflections) is then parameterized
as

(
e2iπ/p (−1)j e−iπ/p

(−1)j e−iπ/p e2iπ/p

)
.

None of the two screenings is fermionic unless |p| = 2.
Conditions (7) are not satisfied for all m, n, j , and p. There are several “pe-

culiar” solutions and a “regular” solution. The peculiar solutions are (m = 0,
n=−k− 3

2 ,p = 2, j =−k− 3
2 ), (m= 0, n=−k− 3

2 ,p =−2, j =−k− 5
2 ), (m=

−k − 3
2 , n = 0,p = 2, j = −k − 3

2 ), (m = −k − 3
2 , n = 0,p = −2, j = −k − 5

2 ),
(m= k+ 3

2 , n= k+ 3
2 ,p = 2, j = k+ 3

2 ), and (n=m= k+ 3
2 , k+ 3

2 ,p =−2, j =
k+ 1

2 ) with half-integer k in all cases; with this parameterization, the resulting cen-
tral charge is in each case equal to 3k

k+2 − 1, which is the central charge of the

ŝ�(2)k/̂h coset (more on it is to be said below, when it occurs as a “regular” solu-
tion).

The regular solution is m= n= 0, yielding the central charge

c= 50− 24

k + 3
− 24(k + 3), (9)

where k+3= 1
p
− j (or, in view of the structure of the formula, 1

k+3 = 1
p
− j ). This

is the central charge of the W3 algebra parameterized in terms of the level k of the
ŝ�(3) affine Lie algebra from which W3 can be obtained by Hamiltonian reduction.
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The centralizer of the screenings does indeed contain a dimension-3 primary field
W(z) (unique up to an overall factor) in the space of differential polynomials in the
fields

∂ϕα(z)= α.∂ϕ(z) and ∂ϕβ(z)= β.∂ϕ(z).
Explicitly, setting j = 0 for simplicity and omitting the (z) arguments in the right-
hand side for brevity,

W(z) = ∂ϕα∂ϕα∂ϕα + 3

2
∂ϕα∂ϕα∂ϕβ − 3

2
∂ϕα∂ϕβ∂ϕβ − ∂ϕβ∂ϕβ∂ϕβ

− 9(p− 1)

2p
∂2ϕα∂ϕα − 9(p− 1)

4p
∂2ϕα∂ϕβ

+ 9(p− 1)

4p
∂2ϕβ∂ϕα + 9(p− 1)

2p
∂2ϕβ∂ϕβ

+ 9(p− 1)2

4p2
∂3ϕα − 9(p− 1)2

4p2
∂3ϕβ. (10)

The Nichols algebra B(X) (of the two-dimensional braided vector space X with
basis F1 and F2 with braiding matrix (1)) is in this case the quotient [23]

B(X)= T (X)/([F1,F1,F2], [F1,F2,F2],Fp1 , [F1,F2]p,Fp2
)

(11)

if p ≥ 3. Here and hereafter, square brackets denote iterated q-commutators con-
structed in accordance with Lyndon word decomposition. If p = 2 (the screenings
are fermionic!), the triple-bracket generators of the ideal are absent. The dimension
is dimB(X)= p3.

The elements Fp1 and Fp2 in the ideal indicate the “positions” of the long screen-
ings

Eα =
∮
e−α∨.ϕ =

∮
e−pα.ϕ and

Eβ =
∮
e−β∨.ϕ =

∮
e−pβ.ϕ

(
α∨ = 2α

α.α

)
,

(12)

i.e., Fp1 and Fp2 “tend to be” the operators “opposite” to the respective long screen-
ing. Generally, these long screenings are to produce m-plet structures in logarithmic
models, similarly to how the triplet structure of the (p,1) logarithmic models [28–
31] is generated by the corresponding long screening [18]. For the current W3-case,
the resulting octuplet algebra is outlined in Appendix B.

2.2 (5.7(3)[23]) q11 =−1, q12q21 ∈⋃∞
a=3Ra , Cartan type A2, ◦

q−1−1 ◦
q

.
The conditions are restated in terms of the scalar products as

α.α = 1+ 2n (n ∈ Z), 2α.β =− 2

p
+ 2j, |p| ≥ 3 (j ∈ Z).
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The braiding matrix is then parameterized as
( −1 (−1)j e−iπ/p
(−1)j e−iπ/p e2iπ/p

)
,

and its Weyl reflections different from the original matrix is
( −1 −(−1)j eiπ/p

−(−1)j eiπ/p −1

)
.

The Weyl orbit also contains the braiding matrix
(

e2iπ/p (−1)j e−iπ/p
(−1)j e−iπ/p −1

)
.

The first screening “wants to be fermionic.” Remarkably, conditions (7) have
a solution only if m = n = 0 (would-be solutions with nonzero m or n require
|p| = 2). Thus the −1 in the braiding matrix does indeed correspond to a fermionic
screening in the standard sense—an operator of the form

∮
F(z), where F(z)F (w)

has a first-order, not a higher-order, zero as z→w.
The solution for the scalar products with m= n= 0 yields the central charge

c= 3k

k + 2
− 1,

where k+2= 1
p
− j . This is the central charge of the ŝ�(2)k/̂h coset (where ĥ is the

Heisenberg subalgebra). The two currents j+(z) and j−(z) that are in the centralizer
of the screenings and generate the coset algebra can be expressed in terms of the two
bosons “in the direction” of each screening as5

j+(z)= e−(1/k)(2ϕα(z)+ϕβ(z)),
j−(z)=− (

∂ϕα(z)∂ϕβ(z)+ ∂ϕα(z)∂ϕα(z)+ (k + 1)∂2ϕα(z)
)

× e(1/k)(2ϕα(z)+ϕβ(z)).
(13)

Adding a boson χ(z) associated with the ĥ algebra immediately yields the three
ŝ�(2)k currents

J±(z)= j±(z)e±
√
(2/k)χ(z) and J 0(z)=

√
k

2
∂χ(z).

For p ≥ 3, the Nichols algebra is the quotient [23]

B(X)= T (X)/([F1,F2,F2],F 2
1 ,F

p

2

)
,

with dimB(X)= 4p.

5The exponentials in (13) are assumed to be normal ordered, and the second line involves the
(standard) abuse of notation: nested normal ordering from right to left is in fact understood after
the expression is expanded.
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A long screening here is

Eβ =
∮
e−pβ.ϕ.

2.3 (5.11(3)[23]) q11 ∈ R3, q12q21 ∈ ⋃∞
a=2Ra , q11q12q21 �= 1, Cartan type B2,

◦
q−1ζ

◦
q

, R3 ' ζ �= q .
In terms of the screening momenta, the conditions become

α.α = 2s

3
, 2α.β =− 2

p
+ 2j, |p| ≥ 2 (j ∈ Z),

where s is coprime with 3. The braiding matrix is parameterized as
(

e2iπs/3 (−1)j e−iπ/p
(−1)j e−iπ/p e2iπ/p

)

and its Weyl reflection noncoincident with the original is
(

e2iπs/(3) (−1)j e−iπ(4ps−3)/(3p)

(−1)j e−iπ(4ps−3)/(3p) e2iπ(4ps−3)/(3p)

)
.

Conditions (7) can be satisfied only if (m = 0,p = 3, s = 3� − 1, j = 1 − 2�) or
(m = 0,p = −3, s = 3� + 1, j = −1 − 2�) (two peculiar solutions), or (m = 0,
s = 1) (the regular solution).

In both peculiar cases, the central charge is 86− 60(k+ 3)− 30
k+3 , where k+ 3=

− 1
3 + � (or 1

k+3 =− 2
3 + 2�) in the first case and k + 3= 1

3 + � (or 1
k+3 = 2

3 + 2�)
in the second case. The central charge is that of the WB2 algebra, discussed in more
detail below when it appears as a “regular” solution.

In the regular case m= 0, the central charge is

c=−21

2
− 6z− 27

2(4z− 3)
,

where 1
z
= 1

p
− j or 1

z
=− 1

p
+ 4

3 + j .
The condition q11q12q21 �= 1 excludes the value p = 3.
If p ≥ 4, and p′ = ord(q11q

−1
22 )= ord(e2iπ/3−2iπ/p), then [23]

B(X)= T (X)/([F1,F2,F2],F 3
1 , [F1,F1,F2]p′ ,Fp2

)
,

with dimB(X)= 9pp′.

2.4 q11 ∈⋃∞
n=4Ra , with two subcases listed below. To identify the central charges

in what follows, we use the formula [39]

c(k)= �− 12
|(k + h∨)ρ∨ − ρ|2

k + h∨ (14)
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for the central charge of a W -algebra obtained by Hamiltonian reduction of a level-
k affine Lie algebra; h∨ is the dual Coxeter number, ρ is half the sum of positive
roots, ρ∨ half the sum of their duals, and � is the rank of the corresponding finite-
dimensional Lie algebra.

2.4.1 (5.11(1)[23]): q12q21 = q−2
11 , Cartan type B2, ◦

q−2q

◦
q2

.
In terms of scalar products, we then have

α.α = 2

p
+ 2j, |p| ≥ 4 (j ∈ Z), 2α.β + 2α.α = 2n (n ∈ Z).

The braiding matrix (stable under Weyl reflections) is

(
e2iπ/p (−1)ne−2iπ/p

(−1)ne−2iπ/p e4iπ/p

)
.

Conditions (7) hold in two peculiar cases and the regular case. The peculiar cases
are (m=−2j,n= 0,p = 4) with c=−1− 24

4j+1 + 24
4j−1 and (m= 1− 2j,n=

0,p =−4) with c=−1− 24
4j−1 + 24

4j−3 .
The regular case is m= n= 0, with

c= 86− 60(k+ 3)− 30

k + 3
,

where k + 3= 1
p
+ j (or 1

k+3 = 2
p
+ 2j ). This is the central charge of the WB2

algebra [40–42] (also see [43]) obtained by Hamiltonian reduction of the level-k
B
(1)
2 algebra (by formula (14), with |ρ|2 = 5

2 , |ρ∨|2 = 5, and 〈ρ,ρ∨〉 = 7
2 for

B2).
The WB2 algebra contains a unique primary field of dimension 4. Explicitly, it
is a rather long (20 terms) differential polynomial in ∂ϕα(z) and ∂ϕβ(z),

p(p− 3)(27p− 32)∂ϕα∂ϕα∂ϕα∂ϕα + 2p(p− 3)(27p− 32)∂ϕα∂ϕα∂ϕα∂ϕβ

− 21p
(
p2 − 2

)
∂ϕα∂ϕα∂ϕβ∂ϕβ − p(3p− 2)(16p− 27)∂ϕα∂ϕβ∂ϕβ∂ϕβ

− p

4
(3p− 2)(16p− 27)∂ϕβ∂ϕβ∂ϕβ∂ϕβ

+ · · ·

− (p− 3)(3p− 4)(30p3 − 115p2 + 144p− 60)

3p2
∂4ϕα

+ (2p− 3)(3p− 2)(15p3 − 72p2 + 115p− 60)

3p2
∂4ϕβ

(all coefficients are polynomials in p with integer coefficients after the overall
renormalization by 12p2).
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If p ≥ 5 is odd, then [23]

B(X) = T (X)/([F1,F1,F1,F2], [F1,F2,F2],Fp1 ,
[F1,F1,F2]p, [F1,F2]p,Fp2

)
,

with dimB(X)= p4. If p ≥ 4 is even, then

B(X) = T (X)/([F1,F1,F1,F2], [F1,F2,F2],Fp1 ,
[F1,F1,F2]p/2, [F1,F2]p,Fp/22

)

and dimB(X)= p4

4 (the second generator of the ideal is absent for p = 4).

2.4.2: q12q21 = q−3
11 , Cartan type G2, ◦

q−3q

◦
q3

.
In terms of scalar products, we now have

α.α = 2

p
+ 2j, |p| ≥ 4 (j ∈ Z), 2α.β + 3α.α = 2n (n ∈ Z).

The braiding matrix is parameterized as
(

e2iπ/p (−1)j+ne−3iπ/p

(−1)j+ne−3iπ/p e6iπ/p

)

and is stable under Weyl reflections. Conditions (7) hold in the peculiar cases
(j = 0,m= 0,p = 4) with c =−10− 54

4n+1 + 24
4n−3 , (m=−3j,n= 0,p = 6)

with c = − 2
3 + 400

3(18j−1) − 36
6j+1 , and (m = 1 − 3j,n = 0,p = −6) with c =

− 2
3 + 400

3(18j−7) − 36
6j−1 and in the regular case m= n= 0 with the central charge

c= 194− 168(k+ 4)− 56

k + 4
,

where k+4= 1
p
+j (or 1

k+4 = 3
p
+3j ). This is the central charge of theWG2 al-

gebra [42, 44] (also see [43, 45]) obtained by Hamiltonian reduction of the level-
k G

(1)
2 algebra (by formula (14), with |ρ|2 = 14, |ρ∨|2 = 14

3 , and 〈ρ,ρ∨〉 = 8 for
G2). The WG2 algebra contains a unique primary field of dimension 6, which
is by far too long to be given here (see [42, 44, 45]).

The remaining subcases of Case 2 may all be considered “peculiar” to some
extent. The values of c are equally “peculiar.”

2.5 q12q21 ∈R8, q11 = (q12q21)
2, Cartan type G2, ◦

ζζ 2

◦
ζ−1

, ζ ∈R8.
The conditions reformulate in terms of scalar products as

2α.β = r

4
+ 2j (j ∈ Z), α.α − 4α.β = 2n,



Virasoro Central Charges for Nichols Algebras 79

where r is odd. The braiding matrix is
(

ir (−1)j eiπr/8

(−1)j eiπr/8 e−(1/4)iπr
)

and its Weyl reflection different from the original matrix is
(

ir (−1)j e(3/8)iπr

(−1)j e(3/8)iπr (−1)r

)
.

Conditions (7) can be satisfied only if (m= 0, r = 1−8j −4n), yielding the central
charge c =−10− 48

4n−1 + 108
4n−9 . For n= 0, this gives the celebrated central charge

value

c= 26.

2.6 q12q21 ∈R24, q11 = (q12q21)
6, ◦

ζζ 6

◦
ζ−1

, ζ ∈R24.
The conditions for the scalar products are

2α.β = r

12
+ 2j (j ∈ Z), α.α − 12α.β = 2n,

where r is coprime with 2 and 3. The braiding matrix
(

ir (−1)j eiπr/24

(−1)j eiπr/24 e−iπr/12

)

has the G3 Cartan matrix, but its nontrivial Weyl reflection is
(

ir (−1)j e(11/24)iπr

(−1)j e(11/24)iπr e2iπr/3

)
,

with the associated generalized Cartan matrix
( 2 −3
−2 2

)
; various other generalized

Cartan matrices are produced under further Weyl reflections.
Conditions (7) are satisfied only if (m= 0, r = 1− 24j − 4n), with c =−10−

144
4n−1 + 324

4n−25 (that r be coprime with 2 and 3 selects the values n = 2 + 3� or
n= 3+ 3�, � ∈ Z).

2.7 q12q21 ∈R30, q11 = (q12q21)
12, ◦

ζζ 12

◦
ζ−1

, ζ ∈R30.
In terms of scalar products,

2α.β = r

15
+ 2j (j ∈ Z), α.α − 24α.β = 2n,

where r is coprime with 30. The braiding matrix, parameterized as
(

e4iπr/5 (−1)j eiπr/30

(−1)j eiπr/30 e−iπr/15

)
,
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has the associated generalized Cartan matrix
( 2 −4
−1 2

)
. The nontrivial Weyl reflection

is
(

e4iπr/5 (−1)j+r e−(7/30)iπr

(−1)j+r e−(7/30)iπr (−1)r

)
,

with the same generalized Cartan matrix, but other (generalized) Cartan matri-
ces are produced under further Weyl reflections. Conditions (7) are solved by
(m = 0, n = 1 + 2�, r = −2 − 5� − 30j), where � = 1 + 6u or � = 3 + 6u,
u ∈ Z, respectively yielding the incomprehensible c = − 62

5 + 2916
5(30u−17) − 180

30u+7

and c=− 62
5 + 2916

5(30u−7) − 180
30u+17 .

4 The List, Items 3.∗
The defining conditions are

q12q21 �= 1, q11q12q21 �= 1, q12q21q22 �= 1,

q22 =−1, q11 ∈R2 ∪R3,

plus any of conditions 3.1–3.7. In terms of the screening momenta, the common
conditions are

β.β = 1+ 2m (m ∈ Z), α.α = 1 or
2s

3
,

where s is coprime with 3.

3.1 (5.7(4)[23]) q11 =−1, q12q21 ∈⋃∞
a=3Ra , Cartan type A2, ◦

q−1 ◦−1
.

In terms of scalar products of the screening momenta, these conditions are

α.α = 1+ 2n (n ∈ Z), 2α.β = 2

p
+ 2j, |p| ≥ 3 (j ∈ Z).

Both screenings “want to be fermionic.” The braiding matrix is

( −1 (−1)j eiπ/p

(−1)j eiπ/p −1

)

and its Weyl reflections are

( −1 −(−1)j e−iπ/p
−(−1)j e−iπ/p e2iπ/p

)
and

(
e2iπ/p −(−1)j e−iπ/p

−(−1)j e−iπ/p −1

)
.
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Remarkably, conditions (7) are satisfied (with |p| ≥ 3) only for m = n = 0 (no
“peculiar” solutions!), yielding the ŝ�(2)k/̂h central charge

c= 3k

k + 2
− 1,

where k + 1= 1
p
+ j . For j = 0, in particular, this relation between k and p takes

the form

1

p+ 1
+ 1

k + 2
= 1.

This “duality” between two levels, k and p − 1, was extensively used in [46, 47]
(see also the references therein); in particular,

ŝ�(2)k/̂h= ŝ�(2|1)p−1/ĝ�(2)p−1,

offering another view on what the CFT counterpart of the Nichols algebra is.6

The currents generating the ŝ�(2)k/̂h coset algebra are given by

j+(z)= ∂ϕβ(z)e(1/k)(ϕα(z)−ϕβ(z)),
j−(z)= ∂ϕα(z)e−(1/k)(ϕα(z)−ϕβ(z))

(15)

(as before, ϕα(z) = α.ϕ(z) and ϕβ(z) = β.ϕ(z) are the boson fields “in the direc-
tion” of the corresponding screening). With an extra boson χ(z) added to account
for the missing ĥ, the ŝ�(2)k algebra currents are reconstructed as

J±(z)= j±(z)e±
√
(2/k)χ(z), J 0(z)=

√
k

2
∂χ(z).

The ŝ�(2) algebra is well known, since the “old” studies of the Wakimoto
bosonization, to be described as a centralizer of two fermionic screenings “at an
angle” to each other.7 In this item in the list, we see again that imposing relations
(7) implies that both −1 in matrix translate exactly into true fermionic screenings.

For p ≥ 3, the Nichols algebra is given by [23]

B(X)= T (X)/(F 2
1 , [F1,F2]p,F 2

2

)

with dimB(X)= 4p.

6This coset equivalence belongs to a vast subject discussed in [48, 49].
7The Wakimoto bosonization [50] yields two essentially different three-boson realizations of
ŝ�(2)—the “symmetric” and the “nonsymmetric” ones, respectively centralizing two fermionic
screenings and one bosonic plus one fermionic screening. The names refer to the “j+ ↔ j− sym-
metric” structure of (15) and the “asymmetric” structure of (13). Somewhat broader, the “variously
symmetric” realizations are discussed in [47].
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3.2 There are two subcases.

3.2.1: q11 ∈R3, q12q21 = q11, Cartan type B2, ◦
ζζ

◦−1
, ζ ∈R3.

This reformulates in terms of scalar products of the screening momenta as

α.α = 2s

3
+ 2� (� ∈ Z), 2α.β = α.α + 2n (n ∈ Z),

where s is coprime with 3. The braiding matrix, which is then parameterized as
(

e2iπs/3 (−1)n+�eiπs/3
(−1)n+�eiπs/3 −1

)
,

has the Cartan type B2. Its nontrivial Weyl reflection is
( −e4iπs/3 −(−1)n+�e−(1/3)iπs
−(−1)n+�e−(1/3)iπs −1

)
.

Once again, conditions (7) ensure that the tentative fermionic screening is such
indeed, i.e., m= 0: the conditions can be solved only if (m= 0, s = 1− 3�) or
(m= 0, s =−n− 3�). These cases respectively yield the unilluminating central
charges 2− 6(12n−7)

9n2+6n−5
and −1− 36

2n+3 + 18
n

.

3.2.2 (5.11(4)[23]): q11 ∈R3, q12q21 =−q11, Cartan type B2, ◦
−ζζ

◦−1
, ζ ∈R3.

Then

α.α = 2s

3
, 2α.β − α.α = 1+ 2n,

where s is coprime with 3. The braiding matrix
(

e2iπs/3 (−1)n+�ieiπs/3
(−1)n+�ieiπs/3 −1

)

is of Cartan type B2. Its Weyl reflections are
(

e2iπs/3 −(−1)n+�ieiπs/3
−(−1)n+�ieiπs/3 −1

)
and

(
e4iπs/3 −(−1)n+�e−iπ(s/3+1/2)

−(−1)n+�e−iπ(s/3+1/2) −1

)
.

Conditions (7) are solved only if (m= 0, s = 1− 3�), which leaves us with an-
other incomprehensible c= 2− 24(12n−1)

36n2+60n+1
(which is c= 26 at n= 0, however).

The Nichols algebra is given by the quotient [23]

B(X)= T (X)/([F1,F1,F2,F1,F2],F 3
1 ,F

2
2

)

with dimB(X)= 36.

The remaining subcases are equally unsuggestive, and the details are omitted.
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3.3 q0 := q11q12q21 ∈R12, q11 = q4
0 . This translates into

α.α + 2α.β = 2r

12
+ 2j, α.α = 4α.α+ 8α.β + 2n.

3.4 q12q21 ∈R12, q11 =−(q12q21)
2, or

2α.β = 2r

12
+ 2j, α.α = 4α.β + 1+ 2n.

3.5 q12q21 ∈R9, q11 = (q12q21)
−3, or

2α.β = 2r

9
+ 2j, α.α =−6α.β + 2n.

3.6 q12q21 ∈R24, q11 =−(q12q21)
4, or

2α.β = 2r

24
+ 2j, α.α = 8α.β + 2n.

3.7 q12q21 ∈R30, q11 =−(q12q21)
5, or

2α.β = 2r

30
+ 2j, α.α = 10α.β + 1+ 2n.

5 The List, Items 4.∗
The conditions are

q12q21 �= 1, q11q12q21 �= 1, q12q21q22 �= 1,

q22 =−1, q11 /∈R2 ∪R3,

plus any of the conditions in cases 4.1.–4.8.
In terms of the screening momenta, the common condition is

β.β = 1+ 2m,

showing that Fβ is a candidate for a fermionic screening.

4.1 (5.11(2)[23]) q11 ∈⋃∞
a=5Ra , q12q21 = q−2

11 , Cartan type B2, ◦
q−2q

◦−1
.

In terms of screenings,

α.α = 2

p
+ 2j, |p| ≥ 5 (j ∈ Z), 2α.α + 2α.β = 2n.
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Then the braiding matrix is parameterized as

(
e2iπ/p (−1)ne−2iπ/p

(−1)ne−2iπ/p −1

)
.

Its Weyl reflection noncoincident with the original matrix is

( −e−2iπ/p −(−1)ne2iπ/p

−(−1)ne2iπ/p −1

)
.

Remarkably, once again, conditions (7) are satisfied only form= n= 0 (tentative
“peculiar” solutions all have |p| ≤ 4). Hence, Fβ is indeed a standard fermionic
screening. The central charge is then given by

c=−25+ 24

k + 3
+ 6(k+ 3),

where 1
p
+ j =− 1

k+1 (or 1
p
+ j = 1

2 + 1
k+1 ). Somewhat mysteriously, this is minus

the central charge

c
W (2)

3
= 25− 24

k+ 3
− 6(k+ 3)

of the W (2)
3 algebra, which can be obtained by a “partial” Hamiltonian reduction of

ŝ�(3)k and which has a three-boson realization [47, 51, 52].8

The Nichols algebra is the quotient [23]

B(X)= T (X)/([F1,F1,F1,F2],Fp1 , [F1,F2]p′ ,F 2
2

)
,

where p′ = ord(−e2iπ/p), with dimB(X)= 4pp′.
None of the remaining cases currently seems illuminating in any respect.

4.2 q11 ∈R5 ∪R8 ∪R12 ∪R14 ∪R20, q12q21 = q−3
11 .

4.3 q11 ∈R10 ∪R18, q12q21 = q−4
11 .

4.4 q11 ∈R14 ∪R24, q12q21 = q−5
11 .

4.5 q12q21 ∈R8, q11 = (q12q21)
−2.

4.6 q12q21 ∈R12, q11 = (q12q21)
−3.

4.7 q12q21 ∈R20, q11 = (q12q21)
−4.

8T. Creutzig has suggested that this a quotient of some CFT that has central charge zero and

contains the W (2)
3 subalgebra. The W (2)

n algebras can be rather versatile [53–55].
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4.8 q12q21 ∈R30, q11 = (q12q21)
−6.

6 The List, Items 5.∗
I merely reproduce the original items from the list of Nichols algebras. The basic
conditions are

q12q21 �= 1, q11q12q21 �= 1, q12q21q22 �= 1,

q11 �= −1, q22 ∈R3,

to which further conditions in 5.1.–5.5. are to be added one by one.

5.1 q0 := q11q12q21 ∈R12, q11 = q4
0 , q22 =−q2

0 .

5.2 q12q21 ∈R12, q11 = q22 =−(q12q21)
2.

5.3 q12q21 ∈R24, q11 = (q12q21)
−6, q22 = (q12q21)

−8.

5.4 q11 ∈R18, q12q21 = q−2
11 , q22 =−q3

11.

5.5 q11 ∈R30, q12q21 = q−3
11 , q22 =−q5

11.

7 Conclusions

Some additions to the above list (including the currently uninteresting items?!)
might hopefully follow in the future. A variety of isolated central charge values
for lower-rank W -algebras can be found in [56, 57] (also see [58]), with interesting
possibilities of an overlap with the isolated values which I deemed uninteresting.
I know nothing about a CFT counterpart of one “regular” case, 2.3 (a G(3) reduc-
tion?). More presentations of nonstandard type appeared recently in [59].

As a more specific result, the construction of an octuplet algebra—a W3-
counterpart of the (1,p) triplet algebra—should be noted.
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Appendix A: Virasoro Algebra

In CFT, the Virasoro algebra

[Lm,Ln] = (m− n)Lm+n + c

12
(m− 1)m(m+ 1), m,n ∈ Z

standardly appears in the guise of an energy–momentum tensor T (z)=∑
n∈ZLn×

z−n−2—a (chiral) field on the complex plane that satisfies the OPEs

T (z)T (w)= c/2

(z−w)4 +
2T (z)

(z−w)2 +
∂T (z)

z−w .

The c parameter (understood to be multiplied by the unit operator whenever neces-
sary) is called the central charge.

For θ bosonic fields ϕ(z)= (ϕ1(z), . . . , ϕθ (z)) with the OPEs

ϕi(z)ϕj (w)= δij log(z−w), (16)

which are also frequently used in calculations in the form

∂ϕi(z)∂ϕj (w)= δij

(z−w)2 ,

the energy–momentum tensors are parameterized by ξ ∈C
θ ,

Tξ (z)= 1

2
∂ϕ(z).∂ϕ(z)+ ξ.∂2ϕ(z). (17)

The corresponding central charge is

cξ = θ − 12ξ.ξ. (18)

The OPE of Tξ (z) with a vertex operator eμ.ϕ(z) is

Tξ (z)e
μ.ϕ(w) = �eμ.ϕ(w)

(z−w)2 +
∂eμ.ϕ(w)

z−w , �= 1

2
μ.μ− ξ.μ

A screening operator is, by definition, any expression
∮
V (·), where V (z) is a

field of dimension � = 1 (and the contour integration is essentially equivalent to
taking a residue “after the action of V (z) is evaluated”). For θ = 2, any two expo-
nentials eα.ϕ(z) and eβ.ϕ(z) with noncollinear α,β ∈ C

2 define screening operators
with respect to the energy–momentum tensor

T (z) = 1

2
∂ϕ(z).∂ϕ(z)

− (2+ α.β − α.α)β.β − 2α.β

2δ2
∂2ϕα(z)
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− (2+ α.β − β.β)α.α − 2α.β

2δ2
∂2ϕβ(z),

where ∂ϕα(z) = α.∂ϕ(z) and ∂ϕβ(z) = β.∂ϕ(z), and δ2 = (α.α)(β.β) − (α.β)2.
This gives formula (4) for the central charge.

Next, I show that the central charge of the θ -boson energy–momentum tensor that
centralizers θ screenings

∮
eαi .ϕ(z), 1 ≤ i ≤ θ , with linearly independent momenta

is invariant under Weyl reflections (8) if Eqs. (7) hold.
Given the αi , 1 ≤ i ≤ θ , the condition that all the exponentials eαi .ϕ(z) have di-

mension 1 is expressed by the system of equations for ξ

1

2
αi.αi − ξ.αi = 1, 1≤ i ≤ θ.

With ξ written as ξ =∑θ
j=1 xjαj , this becomes a system for the xj ,

1

2
αi.αi −

θ∑

j=1

xjαj .αi = 1, 1≤ i ≤ θ, (19)

uniquely solvable if the αi are linearly independent.
Under a Weyl groupoid operation R(k) in (8), the scalar products change and the

solution (xj ) also changes. The “old” and “new” central charges are

c= θ − 12
θ∑

�,j=1

x�xjα�.αj and R
(k)(c)= θ − 12

θ∑

�,j=1

x̃�x̃jR
(k)(α�.αj ),

where the x̃j solve the system “R(k)((19)).” With x̃j = xj +yj , this system becomes

1

2
αi.αi − ak,iαi .αk + 1

2
a2
k,iαk.αk

−
θ∑

j=1

(xj + yj )(αj .αi − ak,iαj .αk − ak,jαk.αi + ak,j ak,iαk.αk)

= 1, 1≤ i ≤ θ

(for a chosen k). The claim is that this system of equations for the “deformation” of
the original solution is solved by the ansatz yj = δj,ky. To see this, substitute such
yj and use (19) in the resulting equations, which then become

ak,i

(
1

2
αk.αk(ak,i + 1)− αi.αk − 1

)
+

(

y +
θ∑

j=1

xjak,j

)

(αk.αi − ak,iαk.αk)= 0,
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where 1 ≤ i ≤ θ . Remarkably, if (7) holds, then the above equations are indeed
solved by

y = 1− 2

αk.αk
−

θ∑

j=1

xjak,j . (20)

It remains to find the new central charge. With x̃j = xj + δj,ky,

θ∑

�,j=1

x̃�x̃jR
(k)(α�.αj ) =

θ∑

�,j=1

x�xj (α�.αj − 2ak,�αj .αk + ak,lak,j αk.αk)

+ 2
θ∑

j=1

yxj (ak,jαk.αk − αk.αj )+ y2αk.αk

and yet another use of (19) shows that this is

=
θ∑

�,j=1

x�xjα�.αj +
(

y +
θ∑

j=1

xjak,j

)(

yαk.αk + 2− αk.αk +
θ∑

�=1

x�ak,�αk.αk

)

,

where the last factor vanishes by virtue of (20). The central charge is invariant.

Appendix B: W3 Logarithmic Octuplet Algebras

With the two screenings as in case 2.1 (the “regular” solution there, with central
charge (9) and the W(z) field (10)), I propose a W3 counterpart of the (1,p) algebra
[28–31] by closely following the constructions in [18].

An octuplet of primary fields is generated from the field eγ.ϕ(z) with γ ∈C2 such
that γ.α∨ = p and γ.β∨ = p, i.e., from the field

W(z)= eγ.ϕ(z), γ = α∨ + β∨

(which is in the kernel of the two screenings Fα =
∮
eα.ϕ and Fβ =

∮
eβ.ϕ). This is

a Virasoro primary field of dimension �= 3p− 2, that is,

LnW(z) = 0, n≥ 1,

L0W(z) =�W(z), �= 3p− 2,

and, moreover, a W3 primary: as is easy to verify, the modes of the dimension-3
field W(z)=∑

n∈ZWnz
−n−3 in (10) act on W(z) such that

WnW(z)= 0, n≥ 0.
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Then the long screenings (12) generate the octuplet

W(z)

Eα

����������������
Eβ

����������������

Wα(z)

Eα

��

Eβ

������������
Wβ(z)

Eα

������������� Eβ

��
0 Wβα(z)Wαβ(z)

Eα

�������������
Eβ

�������������
��

	�
��
� Eα
		

	�
��
��

��
�

� � � � � �
Eβ





�
� � � � � � �

0

Wαβα(z)

Eα

��

Eβ

��������������
Wβαβ(z)

Eα

�������������� Eβ

��
0 Wααββ(z)

Eα

��

Eβ

��

0

0 0

Here, Wα(z) = EαW(z), Wβα(z) = EβWα(z), and so on, and Wααββ(z) = Eβ ×
Wαβα(z) = EαWβαβ(z); the dashed arrows represent maps to the target field up

to a nonzero overall factor ( (−1)p

2 ). All the fields in the diagram are W3-algebra
primaries, with the same Virasoro dimension. All fields below the top are of the
form W•(z)=P•(∂ϕ(z))eμ•.ϕ(z), where the momenta μ• are immediately read off
from the diagram as μα = γ − α∨, μαβ = μβα = γ − α∨ − β∨ = 0, and so on,
and the P•(∂ϕ(z)) are differential polynomials in ∂ϕα(z) and ∂ϕβ(z), of the or-
ders ord(Pα) = ord(Pβ) = p − 1, ord(Pαβ) = ord(Pβα) = 3p − 2, ord(Pαβα) =
ord(Pβαβ)= 3p− 3, and ord(Pααββ)= 4p− 4.

Calculations in particular examples show the OPE

W(z)Wααββ(w)= c1 · 1
(z−w)6p−4

+ c2T (w)

(z−w)6p−6
+ c2/2∂T (w)

(z−w)6p−7
+ · · ·

with nonzero coefficients (and no dimension-3 W(w) field), and the OPEs Wα(z)×
Wβαβ(w) and Wβ(z)Wαβα(w) that start very similarly. The adjoint-s�(3) nature of
the octuplet manifests itself in the OPEs such as

Wα(z)Wβ(w) = c3W(w)

(z−w)3p−2
+ · · · ,

Wα(z)Wαβα(w) = O(z−w),
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Wβ(z)Wβαβ(w) = O(z−w),

Wαβα(z)Wβαβ(w) = c′3Wααββ(w)

(z−w)3p−2
+ · · · .
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34. Adamović, D., Milas, A.: On the triplet vertex algebra W(p). Adv. Math. 217, 2664–2699
(2008). arXiv:0707.1857v2
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Phys. A, Math. Theor. (to appear). arXiv:1301.2235

http://arxiv.org/abs/hep-th/9404113
http://arxiv.org/abs/hep-th/9406203
http://arxiv.org/abs/arXiv:1111.6603
http://arxiv.org/abs/1109.4065
http://arxiv.org/abs/1109.4065
http://arxiv.org/abs/arXiv:1111.5049
http://arxiv.org/abs/hep-th/9207072
http://arxiv.org/abs/hep-th/9302124
http://arxiv.org/abs/arXiv:1108.5157
http://arxiv.org/abs/arXiv:1301.2235


Logarithmic Bulk and Boundary Conformal
Field Theory and the Full Centre Construction

Ingo Runkel, Matthias R. Gaberdiel, and Simon Wood

Abstract We review the definition of bulk and boundary conformal field theory in
a way suited for logarithmic conformal field theory. The notion of a maximal bulk
theory which can be non-degenerately joined to a boundary theory is defined. The
purpose of this construction is to obtain the more complicated bulk theories from
simpler boundary theories. We then describe the algebraic counterpart of the maxi-
mal bulk theory, namely the so-called full centre of an algebra in an abelian braided
monoidal category. Finally, we illustrate the previous discussion in the example of
the W2,3-model with central charge 0.

1 Introduction

In two-dimensional conformal field theory, one usually considers correlation func-
tions where the fields have power law singularities as they approach each other,
for example 〈σ(z)σ (w)〉 = |z − w|1/4 for the correlator of two spin fields in the
critical Ising model. Power law behaviour occurs if the two fields approaching
each other are eigenvectors of the generator of infinitesimal scale transformations
�= L0+L0. In unitary theories one has �† =�, so that � can be diagonalised. In
non-unitary theories, however, there is no a priori reason to impose diagonalisability
of �, and in this case additional logarithmic singularities can occur. For example, in
the symplectic fermion model of [22] the two-point correlator of the partner of the
vacuum state reads 〈ω(z)ω(w)〉 = 4 log |z−w|.
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From the point of view of representation theory, in unitary theories the state
spaces are direct sums of irreducible representations of (two copies of) the Vira-
soro algebra, while in non-unitary theories the indecomposable summands may or
may not be irreducible. In fact, if � is not diagonalisable one necessarily finds such
non-semi-simple behaviour.

A general recipe for constructing examples of non-logarithmic rational confor-
mal field theories, known as the ‘Cardy case’, is as follows. Take all irreducible rep-
resentations Ri of the chiral symmetry, that is, of the algebra formed by all modes of
all holomorphic fields, or, more formally, of a vertex operator algebra V . The state
space relevant to describe the theory on a cylinder, i.e. the space of states on the
circle, is Hbulk =⊕

i Ri ⊗C R
∗
i , where the sum runs over all irreducibles and R∗i is

the conjugate representation. This theory can be placed on a strip, in which case we
have to fix the state space Hbnd on an interval with prescribed boundary conditions.
If the two boundary conditions coincide one may take Hbnd = R ⊗f R∗, where R
is an arbitrary representation of the chiral symmetry V (not necessarily irreducible)
and ‘⊗f ’ denotes the fusion tensor product. In particular, if we take R = V then
Hbnd = V ⊗f V∗ ∼= V . That is, the space of boundary states consists of a single ir-
reducible representation, namely the vacuum representation itself. This leads us to
the first theme to keep in mind:

For an appropriate choice of boundary condition, the boundary theory is much simpler than
the bulk theory.

It turns out that in all rational conformal field theories which can be defined on sur-
faces with or without boundary and which have a unique bulk vacuum, the boundary
theory determines the bulk theory uniquely [13, 18, 33]. The bulk theory is charac-
terised as the ‘largest possible one’ which can be matched to the given boundary the-
ory. This principle has also been checked for some logarithmic models [23, 24, 26].
The second theme to keep in mind can be phrased as:

For a given boundary theory, one may find a largest possible bulk theory that can be con-
sistently and non-degenerately joined to the boundary theory. This bulk theory, if it exists,
is unique.

This principle has also been established in the operator algebraic approach to unitary
conformal field theory on the half-plane with Minkowski signature [36]. (Logarith-
mic models are not accessible in this setting as the formalism requires unitarity.)

On the representation theoretic side, the construction of the bulk theory as the
largest one which fits to a specific boundary theory corresponds to starting from an
algebra in an abelian braided monoidal category C and finding its ‘full centre’, a
commutative algebra in the product category C � Crev.

This paper consists of three parts. In part one, which is Sect. 2, the definition
of bulk and boundary conformal field theory in terms of its correlation functions is
reviewed. Using this definition, the characterisation of the bulk theory as the ‘largest
one’ fitting to a given boundary theory is made precise.

Part two (Sect. 3) provides the algebraic counterparts of the conformal field the-
ory notions in Sect. 2 in the setting of abelian braided monoidal categories. This part
contains a fairly detailed review of the Deligne product of abelian categories, as this
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will play an important role. The main notion in part two is that of the full centre of
an algebra. We will recall its definition, derive some of its properties, and link its
definition to the maximality condition of the bulk theory associated to a boundary
theory from Sect. 2.

Part three (Sect. 4) investigates one specific example of a logarithmic conformal
field theory, namely the W2,3-model of central charge zero. We chose this model
because on the one hand it is still relatively simple, for example it only involves
13 distinct irreducible representations, but on the other hand each ‘nice’ property
from non-logarithmic rational theories which is currently known to be violated in
logarithmic models with a finite number of irreducibles is already violated in the
W2,3-model. We discuss properties of a tentative bulk theory for the W2,3-model
which can be interpreted as a ‘logarithmic extension’ of the underlying unitary min-
imal model at c = 0, i.e. the trivial theory with a one-dimensional state space. We
consider the Virasoro action on states of generalised weight (0,0) and (2,0) and
discuss the operator product expansion of some of these fields. We also find that
an analogue of the indecomposability parameter b is equal to −5. This value has
recently appeared in the discussion of bulk theories with c= 0 [51].

This paper grew out of two talks given by the first author which were based on the
joint works [23–26]. We have tried to make this paper to some extent self-contained.
In consequence it became slightly lengthy and contains a large amount of review
material. Nonetheless, there are also some new results which we briefly list: the
discussion of ideals for homomorphisms of conformal field theories in Sect. 2.2; the
reformulation of the computation of the maximal bulk theory in purely categorical
language in Sect. 3.5 and Table 2; the treatment in Sect. 3 of a class of abelian
monoidal categories more general than finite tensor categories (as defined in [11]);
the existence proof of the full centre in this setting in Theorem 3.24; the calculation
of the analogue of the indecomposability parameter b=−5 in the W2,3-bulk theory
R(1∗) and the operator product expansions in this model in Sect. 4.5.

2 Bulk and Boundary Correlators

In this section we give a definition of conformal field theory on the complex plane
and on the upper half plane in terms of correlation functions. The presentation is
tailored to be self-contained and to make the relation to the algebraic concepts in
Sect. 3 apparent.

Bibliographical Note This section is mostly a review. The characterisation of
CFT on the complex plane in terms of correlators and operator product expansion
is used in [2]. Axiomatic formulations close in spirit to the one presented below are
[21, 28] (other approaches can be found in [16, 27, 32, 48, 49]). The point that the
requirement of modular invariance poses severe constraints on a CFT was stressed
in [3, 5]. CFT on the upper half plane as presented below was developed in [4, 6, 35];
an axiomatic formulation can be found in [33]. The idea to obtain the CFT on the
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complex plane from correlators of boundary fields was first implemented in [44, 45]
and further developed in the context of non-logarithmic rational CFT in [13, 18, 34].
The first application of this principle to logarithmic models can be found in [23, 24].

2.1 Consistency Conditions for CFT on the Complex Plane

We will take the point of view that a two-dimensional conformal field theory (or
any statistical or quantum field theory in any dimension, for that matter) is de-
fined in terms of its correlation functions. That is, we are given a space of fields
F , which is a C-vector space whose elements we call fields. The space F is typi-
cally infinite dimensional, because with each field it contains all its derivatives (see
Remark 2.5(iii) below for a precise statement). In addition we have a collection
of correlators (Cn)n∈Z>0 . We call Cn an n-point correlator. It assigns a complex
number to n fields and n mutually distinct complex numbers, i.e.

Cn :
(
C
n\diag

)× Fn −→C, (2.1)

where C
n\diag stands for points (z1, . . . , zn) ∈ C

n such that zi �= zj for i �= j .
The collection (Cn)n∈Z>0 must obey conditions (C1)–(C5) which we discuss in the
following.

(C1) Each Cn is smooth in each argument from C and linear in each argument
from F .

Of course, in practice the correlators may satisfy stronger properties than smooth-
ness. For example they could be holomorphic, or finite sums of holomorphic times
anti-holomorphic functions (as in the example in Sect. 4). ‘Smooth’ is the mini-
mal condition compatible with the physical requirement that the correlators should
be continuous, and with condition (C4) below which states that the derivative of a
correlator is again a correlator

(C2) Each Cn is invariant under joint permutation of the arguments in C
n and Fn,

i.e. for each permutation σ ∈ Sn,

Cn(z1, . . . , zn,φ1, . . . , φn)= Cn(zσ(1), . . . , zσ(n), φσ(1), . . . , φσ(n)).

The customary notation for a correlator is

Cn(z1, . . . , zn,φ1, . . . , φn)≡
〈
φ1(z1) · · ·φn(zn)

〉
, (2.2)

where for us the right hand side is just a notational device. In particular, we do not
assign an independent meaning to φ(z) as an operator. Still, we will say ‘the field φ
is inserted at position z’ if the pair φ, z is an argument of a correlator.
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We now turn to the notion of a ‘short distance expansion’ or ‘operator product
expansion’.1 The OPE links the n+ 1-point and n-point correlators. Namely, if two
fields, say φ1 and φ2, are ‘close together’ in the sense that z1 is closer to z2 than any
other insertion point, then

〈
φ1(z1)φ2(z2)φ3(z3) · · ·

〉=
∑

α

f αφ1,φ2
(z1 − z2) ·

〈
ϕα(z2)φ3(z3) · · ·

〉
. (2.3)

Here ϕα is some basis of F and f αφ1,φ2
(x) are functions which do not depend on

how many or which fields are part of the correlator, apart from φ1 and φ2.
More formally, we demand that F is a direct sum F =⊕

�∈RF (�) where F (�)

are the fields of ‘generalised scaling dimension’ �. The set of such scaling dimen-
sions must be bounded below and discrete,2 that is, for any�0 there are only finitely
many �≤�0 with F (�) �= 0. We define F to be the algebraic completion, i.e. the
direct product F =∏

�∈RF (�). The OPE is a map

M :C× × F ⊗C F −→ F, (z, v) �→Mz(v), (2.4)

which is linear in F ⊗C F . In the notation of (2.3), this amounts to writing Mx(φ1⊗
φ2) =∑

α f
α
φ1,φ2

(x) · ϕα , where the sum is typically infinite, hence the need for a

completion. Note that F comes with canonical projections to ‘states with scaling
dimension � or less’, P� : F →⊕

d≤� F (d). With the help of these, we formulate
the OPE condition:

(C3) For n ≥ 1, φ1, . . . , φn+1 ∈ F , and (z1, . . . , zn+1) ∈ C
n+1\diag such that

|z1 − z2|< |zk − z2| for k > 2, we have

Cn+1(z1, z2, z3, . . . , zn+1, φ1, φ2, φ3, . . . , φn+1)

= lim
�→∞Cn

(
z2, z3, . . . , zn+1,

P� ◦Mz1−z2(φ1 ⊗ φ2),φ3, . . . , φn+1
)
. (2.5)

The limiting procedure in (2.5) is necessary because Cn is defined only on F , not
on F . The existence of the limit is a non-trivial requirement. In fact, if |z1 − z2| ≥
|zk − z2| for some k > 2, the expression on the right will typically diverge for
�→∞. That (C3) is only formulated for the first two arguments of Cn+1 is not
a restriction due to the permutation invariance imposed in (C2).

1In our setting only the first term makes sense literally, but it is customary to use the second term
and abbreviate it as OPE, so we will do the same.
2That the set of scaling dimensions is bounded below amounts to the physical requirement that
the energy should be bounded from below. It is used for example in (C5) to ensure that the sums
there are finite. The discreteness condition will be needed to formulate (C3), and in particular to
define the projector P� there. The discreteness condition is imposed for simplicity; it rules out all
examples with continuous spectrum of scaling dimensions, such as Liouville theory.



98 I. Runkel et al.

Remark 2.1 In addition to (C3), one often requires the existence of a translation
invariant vacuum vector, that is, a vector Ω ∈ F (0) such that 〈Ω(ζ)φ1(z1) · · ·
φn(zn)〉 = 〈φ1(z1) · · ·φn(zn)〉 for n ≥ 1. We prefer not to include this as an axiom
because our example in Sect. 4 below (conjecturally) satisfies (C1)–(C3), as well as
(C4) and (C5′) to be discussed below, while not having a vacuum vector.

Finally, let us describe the coinvariance conditions. Denote by Vir the Virasoro
algebra. We demand the following properties of F :

• F is equipped with the structure of a Vir⊕Vir-module. The generators of the first
copy of Vir are denoted by Ln and C, and those of the second copy by Ln and C.

• F has a direct sum decomposition into spaces F (�) of generalised (L0 + L0)-
eigenvalue �; this decomposition satisfies that for any �0 there are only finitely
many �≤�0 with F (�) �= 0. (This was already imposed above.)

• F is locally finite as a CL0 ⊕CL0 module. This means that acting with L0 and
L0 on any vector v ∈ F generates a finite-dimensional subspace.

The last condition guarantees in particular that the exponentials exp(λL0) and
exp(λL0), for λ ∈ C, are well defined operators on F . The condition holds auto-
matically if all F (�) are finite-dimensional.

There are two types of coinvariance conditions. The first one is easy to formulate
and allows one to move insertion points:

(C4) For n≥ 1, φ1, . . . , φn ∈ F , and z1, . . . , zn ∈C
n\diag,

d

dz1
Cn(z1, . . . , zn,φ1, . . . , φn)= Cn(z1, . . . , zn,L−1φ1, . . . , φn),

d

dz̄1
Cn(z1, . . . , zn,φ1, . . . , φn)= Cn(z1, . . . , zn,L−1φ1, . . . , φn).

(2.6)

By permutation invariance, the fact that (C4) is formulated only for the first argu-
ment only is not a restriction.

The second type of coinvariance condition is a bit more involved. Let f be
a meromorphic function on C ∪ {∞} (i.e. a rational function) which has poles
at most at the points z1, . . . , zn and ∞, and which satisfies the growth condition
limζ→∞ ζ−3f (ζ ) = 0. Denote the expansion parameters around each of the zk as
f (ζ )=∑∞

m=−∞ f km · (ζ − zk)m+1.

(C5) For n≥ 1, φ1, . . . , φn ∈ F , and z1, . . . , zn ∈C
n\diag, and for all f as above,

n∑

k=1

∞∑

m=−∞
f km ·Cn(z1, . . . , zn,φ1, . . . ,Lmφk, . . . , φn)= 0, (2.7)

and the same condition with Lm in place of Lm.

The sum over m in (2.7) is actually finite: Since f is meromorphic, f km = 0 for
m$ 0, and since the grading by generalised scaling dimensions on F is bounded
from below, Lmφk = 0 for m% 0.
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Remark 2.2 In place of (C5) one could put the stronger requirement of the existence
of a stress tensor. This would be a pair of fields T ,T ∈ F (2) (called the holomor-
phic and anti-holomorphic component of the stress tensor) such that L−1T = 0 and
L−1T = 0, and

Mz(T ⊗ φ)=
∞∑

m=−∞
z−m−2Lmφ, Mz(T ⊗ φ)=

∞∑

m=−∞
z̄−m−2Lmφ. (2.8)

Note that Mz(T ⊗ φ) and Mz(T ⊗ φ) are elements of F , as they should be. Fur-
thermore, one requires that the limit limζ→∞ |ζ |4〈T (ζ )φ1(z1) · · ·φn(zn)〉 exists for
all n and all zi , φi , and similar for T (this is sl(2,C)-invariance of the out vacuum).
The conditions (2.7) arise from the contour integral

1

2πi

∮
f (ζ ) · 〈T (ζ )φ1(z1) · · ·φn(zn)

〉
dζ = 0 (2.9)

where the contour is a big circle enclosing z1, . . . , zn. Deforming the contour to
a union of small circles, one around each zi , and applying the OPE (2.8) results
in (2.7). Not requiring the existence of a stress tenser is akin to not requiring the
existence of a vacuum vector (cf. Remark 2.1): the correlators in the example in
Sect. 4 conjecturally satisfy the convariance condition (C5) without having a stress
tensor.

Remark 2.3

(i) One consequence of (C5) is that all correlators are translation invariant,
〈
φ1(z1 + s) · · ·φn(zn + s)

〉= 〈
φ1(z1) · · ·φn(zn)

〉
for all s ∈C. (2.10)

To see this apply (C5) to the constant function f = 1, in which case f km = δm,−1
for k = 1, . . . , n and so

∑n
k=1Cn(z1, . . . , zn,φ1, . . . ,L−1φk, . . . , φn) = 0.

Combining the corresponding relation for L−1 with (C4) yields translation in-
variance. Along the same lines one shows covariance (not invariance) under
Möbius transformations which map none of the points z1, . . . , zn to infinity.

(ii) A CFT on C can be used to define n-point correlators on the Riemann sphere.
This is done by choosing an isomorphism from the Riemann sphere to C∪ {∞}
such that no field insertion gets mapped to infinity and by then evaluating Cn on
the resulting configuration. (One also needs to include local coordinates around
the insertions, we skip the details.)

Since the OPE allows one to reduce3 Cn+1 to Cn, all correlators are uniquely
determined by the OPE and C1. By translation invariance, C1(z,φ) is independent

3Of course, the OPE can only be applied if the condition on the distances of insertion points in
(C3) is met. But one can always choose a pair zi , zj of distinct points such that |zi − zj | is minimal
among all distances between pairs of insertion points. If necessary, one can then pick a point z′i
arbitrarily close to zi such that |z′i − zj | is strictly smaller than all other distances. The OPE (C3)
applies to the pair z′i , zj and the value of the correlator at zi is determined by continuity.
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of z and thus yields a function Ω∗ : F → C. It follows from (C5) with f (ζ ) =
(ζ − z)m+1 that

C1(z,Lmφ)= 0= C1(z,Lmφ) for all m≤ 1. (2.11)

If φ ∈ F (�), then by definition (L0 + L0 − �)Nφ = 0 for some N > 0. This
gives 0 = C1(z, (L0 + L0 − �)Nφ) = (−�)NC1(z,φ), because, as we just saw,
C1(z, (L0 +L0)

kφ)= 0 for all k > 0. It follows that C1(z,φ) can be non-zero only
if �= 0.

Let us collect the discussion so far into a definition.

Definition 2.4 A conformal field theory on the complex plane is a triple (F,M,
Ω∗), where

• F (the space of fields) is a Vir⊕Vir-module which is a direct sum of generalised
(L0 + L0)-eigenspaces F (�) whose generalised eigenvalues are bounded from
below and discrete, and which is locally finite as a CL0 ⊕CL0 module,

• M (the operator product expansion) is a function C
× × F ⊗C F → F which is

linear in F ⊗C F ,
• Ω∗ (the out-vacuum) is a linear map F (0)→C,

such that there exists a collection of correlators (Cn)n∈Z>0 which satisfy (C1)–(C5)
and the normalisation condition C1(z,φ)= 〈Ω∗, φ〉.

Remark 2.5

(i) The definition shows that a CFT contains only a relatively small amount of
data which has to satisfy an infinite number of intricate linear and differential
equations. It is in fact very hard to prove that a triple (F,M,Ω∗) gives a CFT.
To some extent, the formalism of vertex operator algebras, its representations
and intertwining operators was developed with this aim. The VOA formalism
allows one to prove that non-logarithmic rational CFTs provide examples of
Definition 2.4, see [28]. We are not aware of a full proof of the existence of
a logarithmic CFT in the above sense, e.g. using the formalism [30]. (This is
merely to indicate that logarithmic CFTs are more difficult, not that we doubt
their existence.)

(ii) We have deliberately not included non-degeneracy of the 2-point correlator
〈φ(z)ψ(w)〉 into Definition 2.4; this will be discussed in the next subsection.

(iii) If the space F is finite-dimensional, then the Vir⊕ Vir-action on F has to be
trivial,4 and so in particular L−1 and L−1 would act trivially on F . By (C5)

4All finite dimensional Vir-modules M are trivial. The proof is easy. The Jordan normal form
of L0 splits M into generalised L0-eigenspaces. Let Λ ≥ 0 be such that all generalised L0-
eigenvalues have real parts of absolute value less or equal to Λ. Since Lm changes the gener-
alised L0-eigenvalue by −m, all Lm with |m|> 2Λ must act as zero. For m �= 0 and 2N +m �= 0
we can write Lm = [LN+m,L−N ]/(2N +m). For N large enough, both LN and Lm−N act triv-
ially on M , and so all Lm with m �= 0 must act trivially. Therefore, also L0 = 1

2 [L1,L−1] and
C = 2[L2,L−2] − 4[L1,L−1] act trivially.
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this implies that all correlators are independent of the insertion points. Such a
conformal field theory is called a topological field theory.

(iv) As mentioned in the initial bibliographical remark, the above axiomatic ap-
proach is closest in spirit to [2, 21, 28]. All of these require that the generator
of scale transformations L0 + L0 acts diagonally and with eigenvalue � on
F (�), and so they do not accommodate logarithmic theories. Some similarities
and further differences are:

[2]: There, (C1), (C2) are implicitly assumed, and also (C3) is implicit when
requiring the existence of an OPE. The existence of a stress tensor is
demanded, which then entails (C4) and (C5).

[21]: The emphasis is on constructing a (meromorphic) CFT from a generating
set of fields and their correlators. (C2) is assumed, and (C1) is replaced
by the much stronger condition that all correlators should be analytic
in the insertion points. The OPE and (C3) are a consequence of the con-
struction (see Theorem 3 there). The covariance conditions (C4) and (C5)
are imposed only for the Möbius group (that is, for L0, L±1). Accord-
ingly, existence of a stress tensor is not required (but the consequences
of the existence of a stress tensor are investigated in Sect. 7 there).

[28]: There, the notion of a ‘conformal full field algebra’ is introduced (see
Definitions 1.1 and 1.19). (C1) and (C2) are stated in Definition 1.1, and
(C3) is replaced by the stronger ‘convergence property’ which involves
multiple simultaneous OPEs. In Definition 1.19, the existence of a stress
tensor is imposed, from which (C4) and (C5) follow.

The present set of axioms (C1)–(C5) is intended to be a minimal set of conditions
which one would want to require from a conformally invariant theory.

Suppose (F,M,Ω∗) is a conformal field theory. By assumption there exists a
collection of correlators (Cn)n∈Z>0 satisfying (C1)–(C5) and we have seen above
that this determines the Cn uniquely. As a small example computation with the
above axioms, let us look at 〈φ(z)ψ(w)〉. By translation invariance, we may assume
w = 0. By (C3),

〈
φ(z)ψ(0)

〉= lim
�→∞C1

(
0,P� ◦Mz(φ ⊗ψ)

)

= 〈
Ω∗,Mz(φ ⊗ψ)

〉
. (2.12)

The limit can be dropped because Ω∗ is non-vanishing only on F (0). Next, by (C5)
with f (ζ ) = ζ we know that C2(z,0, (L0 + zL−1)φ,ψ) + C2(z,0, φ,L0ψ) = 0,
together with (C4) we find

−z d
dz

〈
Ω∗,Mz(φ ⊗ψ)

〉= 〈
Ω∗,Mz(L0φ ⊗ψ)

〉+ 〈
Ω∗,Mz(φ ⊗L0ψ)

〉
(2.13)
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and a corresponding equation with d
dz̄

and L0. The solution to these first order dif-
ferential equations reads

〈
φ(z)ψ(0)

〉= 〈
Ω∗,M1 ◦ exp

{− ln(z)(L0 ⊗ idF + idF ⊗L0)

− ln(z̄)(L0 ⊗ idF + idF ⊗L0)
}
φ ⊗ψ 〉

. (2.14)

From this we see two things: when evaluated on Ω∗, Mz is uniquely fixed by M1;
and if the action of L0 or L0 has a nilpotent part, the two-point correlators may
contain logarithms. In sub-representations of F which are irreducible, L0 acts di-
agonalisably since exp(2πiL0) commutes with all Virasoro modes, and hence by
Schur’s Lemma has to be a multiple of the identity. In this sense, the appearance
of logarithms is linked to (but not equivalent to) the presence of non-semi-simple
Vir-modules.

2.2 Background States, Non-degeneracy, and Ideals

We would like to allow more general out-states—or background states—than the
out-vacuum Ω∗, namely, we would like to be able to place an arbitrary state from
the graded dual of F ‘at infinity’. The graded dual of F is defined as

F ′ = {
u : F →C linear | ∃�max(u) : u

(
F (�)

)= 0 for �>�max(u)
}
. (2.15)

The graded dual is again a Vir ⊕ Vir-module via (Lmu)(v) := u(L−mv) and
(Lmu)(v) := u(L−mv). With this definition, the generalised (L0 +L0)-eigenvalues
of F ′ are the same as those of F and each element u ∈ F ′ is annihilated by Lm and
Lm for large enough m> 0.

Define a CFT on C with background states as a pair (F,M), where F and M
are as in Definition 2.4. However, for each u ∈ F ′ we now demand the existence of
functions Cn(u|z1, . . . , zn,φ1, . . . , φn), which we will also write as

u
〈
φ1(z1) · · ·φn(zn)

〉
, (2.16)

and which have to satisfy the following conditions:

• u〈φ(0)〉 = u(φ) for all u ∈ F ′, φ ∈ F .
• (C1)–(C4) from before, but with Cn(u| · · · ) in place of Cn(· · · ).
• (C5′), which is a modified version of (C5) to be described now.

Let f be a rational function on C∪{∞} as for (C5), but without imposing the growth
condition at infinity. Define the f km as for (C5) and define f∞m via the expansion
around infinity: f (ζ )=∑∞

m=−∞ f∞m ζm+1 for |ζ | larger than all of the |zi |.
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(C5′) For n ≥ 1, u ∈ F ′, φ1, . . . , φn ∈ F , and z1, . . . , zn ∈ C
n\diag, and for all f

as above,

n∑

k=1

∞∑

m=−∞
f km ·Cn(u|z1, . . . , zn,φ1, . . . ,Lmφk, . . . , φn)

=
∞∑

m=−∞
f∞−m ·Cn(Lmu|z1, . . . , zn,φ1, . . . , φn) (2.17)

and the same condition with Lm in place of Lm.

As for (C5), the sums in (2.17) only involve a finite number of non-zero terms.
Let (F,M) be a CFT on C with background states. Let Ω∗ ∈ F ′ be a pri-

mary sl(2,C)-invariant state, that is, LmΩ∗ = 0 = LmΩ
∗ for all m ≥ −1. Then

(F,M,Ω∗) is a CFT on C in the sense of Definition 2.4, with correlators
Cn(Ω

∗| · · · ). Indeed, (C5′) reduces to (C5) if we fix u to be Ω∗ and impose the
growth condition limζ→∞ ζ−3f (ζ )= 0.

Remark 2.6 As was noted in Remark 2.5(iii), when F is a trivial Vir⊕Vir-module,
(F,M) is a topological field theory. One can easily convince oneself that then the
pair (F,M) is just a commutative, associative algebra with multiplication M : F ⊗
F → F (F is concentrated in grade 0, so F = F , and M is position independent).
Indeed, a useful way to think about a conformal field theory on the complex plane is
as a generalisation of a commutative, associative algebra where the product depends
on a non-zero complex parameter.

Continuing the analogy with algebra, let us define a homomorphism of CFTs
(F,M) and (G,N) to be a Vir⊕ Vir-intertwiner f : F → G such that f ◦Mx =
Nx ◦ (f ⊗ f ). Since f (F�)⊂G(�), the map f is well-defined as a map F →G.
By an ideal in F we mean a Vir⊕ Vir-submodule I of F such that for all ι ∈ I ,
φ ∈ F and x ∈ C

× we have Mx(ι ⊗ φ) ∈ I and Mx(φ ⊗ ι) ∈ I (actually one of
the two conditions implies the other). The kernel of a homomorphism is an ideal.
Given an ideal I ⊂ F , we obtain a CFT on the quotient F/I such that the canonical
projection π : F → F/I is a homomorphism of CFTs.

Another class of examples of ideals is the following. Let (F,M,Ω∗) be a CFT
on C. Let F0 be the kernel of the 2-point correlator, i.e. fix z �=w and define

F0 =
{
η ∈ F |〈φ(z)η(w)〉= 0 for all φ ∈ F}

. (2.18)

From (2.14) one concludes that F0 is independent of z, w. It follows from (C5) that
F0 is a Vir⊕Vir-submodule of F . Let η ∈ F0 and φ,ψ ∈ F . By expressing the 3-
point correlator 〈η(x)φ(y)ψ(z)〉 as a limit of two-point correlators via (C3) in two
ways, one involving Mx−y(η ⊗ φ) and one My−z(φ ⊗ ψ), one sees that F0 is an
ideal in F . Again because of (C3), a correlator 〈φ1(z1) · · ·φn(zn)〉 is zero if at least
one of the φi is from F0.
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Definition 2.7 A conformal field theory on the complex plane (F,M,Ω∗) is non-
degenerate if F0 as defined in (2.18) is {0}.

Remark 2.8

(i) If Ω∗(F0) = {0}, the CFT on the quotient F/F0 has an out-vacuum induced
by Ω∗ and is non-degenerate. On the level of correlators, one cannot tell the
difference between F and F/F0 and hence it is common to restrict one’s atten-
tion to non-degenerate CFTs on C. However, the device of background states
allows one to obtain interesting correlators also for degenerate CFTs.

(ii) Let f : F → G be a homomorphism of the CFTs (F,M) and (G,N). Let
Γ ∗ ∈G′ be a primary sl(2,C)-invariant state. Then Ω∗ := Γ ∗ ◦ f is a primary
sl(2,C)-invariant state in F ′. Because of f ◦Mx =Nx ◦(f ⊗f ), the correlators
of (F,M,Ω∗) and (G,N,Γ ∗) are related by

〈
φ1(z1) · · ·φn(zn)

〉
F
= 〈
φ′1(z1) · · ·φ′n(zn)

〉
G
, where φ′i = f (φi). (2.19)

(iii) With the notation of (ii), if ker(f ) �= {0}, it follows from (2.19) that the
CFT (F,M,Ω∗) is necessarily degenerate. Explicitly, 〈φ(z)ψ(w)〉F = 〈Ω∗,
Mz−w(φ ⊗ ψ)〉 = 〈Γ ∗, f ◦Mz−w(φ ⊗ ψ)〉 = 〈Γ ∗,Nz−w(f (φ) ⊗ f (ψ))〉 =
〈φ′(z)ψ ′(w)〉G, so that ker(f )⊂ F0.

(iv) If there is an isomorphism f : F → F ′ of Vir⊕Vir-modules, one can define the
non-degenerate pairing (u, v)= f (u)〈v(0)〉 = 〈f (u), v〉 on F ×F . This pairing
is invariant in the sense that (Lmu,v)= (u,L−mv) and (Lmu,v)= (u,L−mv)
for all u,v ∈ F and m ∈ Z. In this situation one can also ask if the inversion
z �→ 1/z is a symmetry of the theory, i.e. if, for all φi,ψi ∈ F ,

f (ψ1)
〈
φ1(z1) · · ·φn(zn)ψ2(0)

〉= f (ψ2)
〈
φ′1(1/z1) · · ·φ′n(1/zn)ψ1(0)

〉
, (2.20)

where (see, e.g., Sect. 3.2 in [20])

φ′i = exp
(
ln

(−z−2
i

)
L0 + ln

(−z̄−2
i

)
L0

)
exp

(−z−1
i L1 − z̄−1

i L1
)
φi. (2.21)

An inversion-covariant CFT with background states provides us with an alter-
native way to define correlators on the Riemann sphere as compared to Re-
mark 2.3(ii). For a Riemann sphere with two or more insertions, choose an
isomorphism with C ∪ {∞} which maps one of the insertion points to infin-
ity and evaluate the resulting configuration with Cn(f (·)| · · · ). Different such
choices are related by a Möbius transformation which maps one of the inser-
tion points (including infinity) to infinity. (As in Remark 2.3(ii) one needs to
choose local coordinates around the insertions, we skip the details.)

In Sect. 4.5, we will encounter the special situation of a (conjectural) CFT on C

with background states (F,M) which has a surjective homomorphism π : F → C

to the trivial CFT (C, ·) with one-dimensional state space, where ‘·’ stands for the
product on C. Because π is a Vir ⊕ Vir-intertwiner, this situation can only occur
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for c = 0. If we take Ω∗ = π (which is a primary sl(2,C)-invariant state in F ′) as
out-vacuum, the correlators of (F,M,Ω∗) satisfy

〈
φ1(z1)φ2(z2) · · ·φn(zn)

〉
F
= π(φ1) · π(φ2) · · ·π(φn). (2.22)

Thus, if we want to tell the theory (F,M) apart from the trivial theory we must
consider correlators with background states other than Ω∗. This small observation
is the reason for including this subsection.

2.3 Modular Invariant Partition Functions

Given a Vir⊕Vir-module F as in the Definition 2.4, the graded trace of F is

Z(F ; τ)= trF
(
qL0−C/24q̄L0−C/24), (2.23)

where q = e2πiτ and τ is a complex number with Im(τ ) > 0. Suppose for the mo-
ment that C and C both act on F by multiplication with a number c. Then we can
rewrite Z as

Z(F ; τ)=
∑

�

e−2π Im(τ )·(�−c/12) trF (�)
(
e2πi Re(τ )(L0−L0)

)
. (2.24)

The graded trace may be ill-defined, for example L0 and L0 might have infinite
common eigenspaces or the sum over � may not converge. If Z(F ; τ) is well-
defined, it is a generating function sorting states in F by their scaling dimension (or
energy)—with dual parameter Im(τ )—and by their spin with dual parameter Re(τ ).

Given a conformal field theory on the complex plane (F,M,Ω∗), one may ask
if the set of correlators Cn determined by it is part of a larger family of correlators
which allow Riemann surfaces other than the complex plane. The simplest addi-
tional surface would be a torus of complex modulus τ ,

Tτ =C/(Z+ τZ). (2.25)

A correlator of n fields on Tτ is then required to be related to a sum of correlators
of n+ 2 fields on the Riemann sphere by ‘inserting a sum over intermediate states’.
Schematically, this is shown in Fig. 1. We will not go into any detail, but we point
out that the sum is over a basis {ϕα} of F and a basis {ϕ′α} dual to the first basis
with respect to the 2-point correlator on the Riemann sphere. For this procedure
to make sense, the 2-point correlator has to be non-degenerate. Such correlators
on the Riemann sphere can be obtained from a non-degenerate CFT on C via Re-
mark 2.3(ii) or from a CFT with background states and an isomorphism F → F ′ as
in Remark 2.8(iv).

If the system of correlators on the Riemann sphere form part of a larger collection
defined on other Riemann surfaces including the torus, then the amplitude for the
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Fig. 1 A correlator of n bulk
fields φi ∈ F on the torus can
be expressed as a sum of
correlators of n+ 2 fields on
the Riemann sphere, where
the two additional bulk fields
are taken from a basis {ϕα} of
F and its dual basis {ϕ′α}

torus Tτ is described by the function Z(F ; τ). It must therefore only depend on the
conformal equivalence class of Tτ , that is, it must be modular invariant,

Z(F ;−1/τ)= Z(F ; τ + 1)= Z(F ; τ). (2.26)

The function Z(F ; τ) is called the partition function of the CFT.

Remark 2.9

(i) Physically, if the CFT arises as a continuum limit of a two-dimensional critical
lattice model, one would expect its partition function to be modular invariant
since the lattice model could equally be evaluated in a finite geometry with
periodic boundary conditions.

(ii) For non-logarithmic rational conformal field theories, modular invariance of
the partition function proved to be very constraining. Understanding which
Vir⊕Vir-modules F (or V⊗C V-modules for a vertex operator algebra V) give
rise to a modular invariant graded trace is an important step in attacking classi-
fication questions. A typical behaviour in non-logarithmic rational examples is
that if V has order N distinct irreducible representations, then a modular invari-
ant F splits into order N2 irreducible direct summands. In this sense, modular
invariant CFTs for a fixed V are all ‘equally complicated’.5

2.4 Consistency Conditions for CFT on the Upper Half Plane

The description of conformal field theory on the upper half plane is very similar to
that on the complex plane. The main difference is that there are now two spaces of
fields: bulk fields, which are the ones already discussed in Sect. 2.1 and are inserted
in the interior of the upper half plane, and boundary fields, which must be inserted

5This statement can be made more precise: a non-logarithmic rational CFT with symmetry
V ⊗C V , which has a unique vacuum and is modular invariant, has the property that the categorical
dimension of F is equal to the global dimension of Rep(V), see Theorem 3.4 in [34] for details. In
particular all such F have the same categorical dimension.
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Fig. 2 Bulk and boundary field insertions on the upper half plane. Here φi ∈ F , ψi ∈ B and
Im(zi ) > 0, xi ∈ R. The figure describes the correlator 〈ψ1(x1)ψ2(x2)ψ3(x3)φ1(z1)φ2(z2)〉 =
U3,2(x1, x2, x3, z1, z2,ψ1,ψ2,ψ3, φ1, φ2)

on the real axis, cf. Fig. 2. Correspondingly, the collection of correlators (Um,n)m,n
now depends on two integers, m counting the number of boundary fields and n

counting the number of bulk fields. Let H := {z ∈ C| Im(z) > 0} be the open upper
half plane. Then

Um,n :
(
R
m\diag

)× (
H
n\diag

)×Bm × Fn −→C, (2.27)

where H
n\diag and R

n\diag refer the set of n mutually distinct points. The cus-
tomary notation is, for φi ∈ F , ψi ∈ B , zi ∈H and xi ∈R,

Um,n(x1, . . . , xm, z1, . . . , zn,ψ1, . . . ,ψm,φ1, . . . , φn)

= 〈
ψ1(x1) · · ·ψm(xm)φ1(z1) · · ·φn(zn)

〉
. (2.28)

Remark 2.10 In the discussion of correlators on the upper half plane above we are
implicitly assuming that the entire real axis carries the same boundary condition.
In more generality one would allow different intervals to carry different boundary
conditions. We will not treat this case explicitly, but we note that it is included in
the present formalism: One can always think of the real line with several boundary
conditions as a real line with a single boundary condition given by their superposi-
tion, together with appropriate boundary field insertions that project to the individual
constituents.

Definition 2.11 A conformal field theory on the upper half plane is a tuple
(
F,M,Ω∗;B,m,ω∗;b),

where

• (F,M,Ω∗) is a CFT on the complex plane,
• B (the space of boundary fields) is a Vir-module which is a direct sum of gen-

eralised L0-eigenspaces B(h), whose generalised L0-eigenvalues h are bounded
below and discrete,6

6The space B is automatically locally finite as a CL0 module (cf. Sect. 2.1 for the definition of
‘locally finite’). This is so because any vector v in B can be written as a finite sum of vectors
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• m (the boundary OPE) is a map R>0 ×B ⊗C B→ B , linear in B ⊗C B ,
• ω∗ (the out-vacuum on the upper half plane) is a linear function B(0)→C,
• b (the bulk-boundary map) is a map R>0 × F → B , linear in F ,

such that there exists a collection of correlators (Um,n)m,n, with m,n ∈ Z≥0 and
(m,n) �= (0,0), which satisfy (B1)–(B5) in Appendix A, as well as the normalisa-
tion condition U1,0(0,ψ)= 〈ω∗,ψ〉 for all ψ ∈ B .

Conditions (B1)–(B5) are the same in spirit as (C1)–(C5), just more tiresome
to write down, and they have been moved to Appendix A for this reason. Here we
merely note that there are now three different types of short distance expansions.
The OPE of two bulk fields as in (C3), the expansion of a bulk field φ close to the
boundary in terms of boundary fields via by(φ) ∈ B , and the OPE of two boundary
fields (ψ,ψ ′) �→mx(ψ ⊗ψ ′) ∈ B .

The basic class of examples is provided by the Virasoro minimal models with
A-series modular invariant. In this case the central charge is c= 1− 6(p− q)2/pq
with p,q ≥ 2 and coprime. Denote by i a Kac-label for that central charge and by
Ri the corresponding irreducible representation7 of Vir. Then F =⊕

i Ri ⊗C Ri ,
where i runs over all Kac-labels (modulo their Z/2-identification) and for B we
can take the vacuum representation B = R(1,1) of L0-weight 0. There are many
more possible spaces of boundary fields for this bulk theory, namely B =U ⊗f U∗,
where U is any direct sum of the Ri and ⊗f denotes the fusion product (resulting
again in a direct sum of the Ri according to the fusion rules).

Let us stress again the point made in the introduction and in Remark 2.9(ii). The
space of bulk fields in a modular invariant CFT tends to be ‘big’ in the sense that it
involves many different irreducible representations (in logarithmic CFT this should
be taken as a statement about the composition series or about the character). On
the other hand, there often exists a CFT on the upper half plane with bulk fields F
and a much simpler set of boundary fields B involving only very few irreducible
representations. One may thus attempt to first gain control over the boundary theory
and then try to construct a fitting bulk theory. This is the topic of the next subsection.

2.5 From Boundary to Bulk

In this subsection we make precise the following idea: Given a boundary theory, i.e.
a space of boundary fields and their correlators on the upper half plane, try to build
the ‘biggest bulk theory’ that can be made to fit to this boundary theory. We will find

vh ∈ B(h), and on each vh we have (L0 − h)Nvh = 0 for some large enough N . For F , the same
argument only gives local finiteness as a C(L0 + L0) module, which is why local finiteness as a
CL0 ⊕CL0 module was included as a separate condition.
7Of course there are many more irreducible representations of the Virasoro algebra with this value
of the central charge, but only those corresponding to entries in the Kac table are also representa-
tions of the simple Virasoro vertex operator algebra with this central charge.
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that this bulk theory, if it exists, is unique. The algebraic version of the question of
existence and the description of the data F , M , and b will be addressed in Sect. 3.

Remark 2.12 In Sects. 2.1–2.4 we have discussed CFTs with Virasoro symmetry.
This can be generalised to other vertex operator algebras V as underlying symmetry
of the CFT. The space of bulk fields F is then a representation of V ⊗C V and
the space of boundary fields B a representation of V . The coinvariance conditions
become those of V and will contain the Virasoro conditions in (C5) and (B5) as a
subset. It is important for us to allow this generalisation, even if we avoided spelling
out the formalism for general V . The reason is that in the examples we study, we
want the category of representations Rep(V) to have certain finiteness properties (in
particular a finite number of irreducibles, more details will follow in condition (PF)
in Sect. 3.2 below). If we were only to allow V to be the simple Virasoro vertex
operator algebra at a given central charge, the finiteness conditions would limit us
to (non-logarithmic) minimal models. Therefore, we allow for more general V , in
particular the vertex operator algebra W at c = 0 for the W2,3-model discussed in
Sect. 4. It is not currently clear to us to which extent the construction below is the
right ansatz if we were to drop these finiteness conditions.

Definition 2.13 A boundary theory is a triple (B,m,ω∗) with B , m, ω∗ as in Defi-
nition 2.11, such that there exists a collection of correlators on the upper half plane
(Um,0)m∈Z>0 involving only boundary fields, and which satisfy (B1)–(B5) restricted
to Um,0, as well as U1,0(0,ψ)= 〈ω∗,ψ〉 for all ψ ∈ B .

Thus, a CFT on the upper half plane consists of a CFT on the complex plane, a
boundary theory, and a consistent interaction between them via the bulk-boundary
map. In analogy with Definition 2.7 we say

Definition 2.14 A boundary theory (B,m,ω∗) is called non-degenerate if for all
x, y ∈R with x �= y and ψ ∈ B there is a ψ ′ ∈ B such that 〈ψ(x)ψ ′(y)〉 �= 0.

Remark 2.15

(i) Continuing from Remark 2.6, it is again helpful to briefly consider the much
simpler special case of topological field theory. One checks that a non-
degenerate boundary theory (B,m,ω∗) with trivial Vir-action on B is the same
as an associative but not necessarily commutative algebra B , together with a
map ω∗ : B → C such that (a, b) �→ 〈ω∗, a · b〉 is a non-degenerate pairing
on B .

(ii) As in Sect. 2.2 one can introduce boundary theories with background states
(B,m) which involve a modified version of condition (B5). We have chosen not
to discuss boundary theories with background states in detail. The construction
of the ‘biggest bulk theory’ below is therefore formulated in terms of a non-
degenerate boundary theory, but one could alternatively use a boundary theory
with background states.
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Fig. 3 Geometric setting for the centrality condition. The limit (2.30) defining Ũ2,1(s, x, iy,

ψ ′,ψ,φ) is assumed to exist for y < |x|. This gives rise to two functions U±(x) on the open
interval (−s, s): U+(x) equals Ũ2,1 for x ∈ (y, s) as shown in a, while U−(x) equals Ũ2,1 for
x ∈ (−s,−y) as shown in b

Let us now fix a non-degenerate boundary theory (B,m,ω∗). The ‘biggest bulk
theory’ will be characterised as a terminal object in a category of pairs P , which we
proceed to define. An object of P is a pair (F̃ , b̃), where

• F̃ is a ‘candidate space of bulk fields’. Namely it is a Vir ⊕ Vir-module with
boundedness condition as in Definition 2.4 (or more generally a V⊗CV-module).

• b̃ is a ‘candidate bulk-boundary map’. By this we mean that b̃ : R>0 × F̃ →
B as in Definition 2.11, such that there exists a function Ũ1,1 : R × H × B ×
F̃ →C (a ‘candidate correlator’ of one bulk field and one boundary field) which
satisfies the derivative property (B4), the coinvariance condition (B5), and which
for |x|> y can be expressed through the candidate bulk-boundary map and the
boundary 2-point correlator as

Ũ1,1(x, iy,ψ,φ)= lim
h→∞U2,0

(
x,0,ψ,Ph ◦ b̃y(φ)

); ψ ∈ B,φ ∈ F̃ . (2.29)

Here U2,0 is a boundary correlator from Definition 2.13 which is uniquely fixed
by (B,m,ω∗), and Ph is the canonical projection B→⊕

d≤h B(d), analogous to
P� in (C3).

• b̃ has to be central, a condition which we will detail momentarily.

To formulate the centrality condition, we define a candidate correlator Ũ2,1 of
two boundary fields ψ,ψ ′ ∈ B and one bulk field φ ∈ F̃ via

Ũ2,1
(
s, x, iy,ψ ′,ψ,φ

)= lim
h→∞U3,0

(
s, x,0,ψ ′,ψ,Ph ◦ b̃y(φ)

)
, (2.30)

at least for y < |x| < s (we take s > 0); we assume (as part of the centrality con-
dition) that the limit exists. There are then two disconnected domains for x: it can
be in (y, s) or in (−s,−y), see Fig. 3 for an illustration. We now try to use the
derivative property (B5) in the form

d

dx
Ũ2,1

(
s, x, iy,ψ ′,ψ,φ

)= Ũ2,1
(
s, x, iy,ψ ′,L−1ψ,φ

)
(2.31)
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to extend the function Ũ2,1 to all of (−s, s). Depending on whether we start from
(y, s) or in (−s,−y), we a priori obtain two different functions U+(x) and U−(x)
on (−s, s). We call b̃ central if these two extensions coincide: U+(x)=U−(x) for
all x ∈ (−s, s).

The centrality condition holds automatically in a CFT on the upper half plane
(because the correlator U2,1 is a smooth function and satisfies the expansion con-
ditions (B3)). The point here, of course, is to impose only a small subset of the
conditions a CFT has to satisfy. For example, to define the pairs (F̃ , b̃) we are only
ever looking at candidate correlators with one bulk field and one or two boundary
fields.

But back to the category of pairs P . Now that we have defined its objects, it is
easy to give the space of morphisms from (F̃ , b̃) to (G̃, c̃). It consists of all Vir⊕
Vir-intertwiners f : F̃ → G̃ (or more generally V ⊗C V-intertwiners) such that the
diagram of maps

F̃
f





b̃y
���

��
��

G̃

c̃y
����

��
�

B

(2.32)

commutes for all y > 0.
An object T in a category C is called terminal if for every object U ∈ C there

exists a unique morphism U → T . A category C may or may not have a terminal
object, but if one exists, it is unique up to unique isomorphism (take two terminal
objects T and T ′ and play with maps between them). We have now gathered all
ingredients to define:

(
F(B), b(B)

)
is a terminal object in P . (2.33)

We want to think of F(B) as the maximal space of bulk fields which can be consis-
tently joined to our prescribed boundary theory (B,m,ω∗), and of course we take
b(B) as the bulk-boundary map. The next lemma makes this interpretation precise.

Lemma 2.16 Let B be a non-degenerate boundary theory. Let (F (B), b(B)) be a
terminal object in P and let (F̃ , b̃) be an arbitrary object in P .

(i) The kernel of b̃y : F̃ → B is independent of y.
(ii) The map b(B)y : F(B)→ B is injective for each y > 0.

(iii) If b̃y : F̃ → B is injective for y > 0, then there is an injective Vir ⊕ Vir-
intertwiner ι : F̃ → F(B) such that b̃y = b(B)y ◦ ι for all y > 0.

Proof For part (i), let K(y) be the kernel of b̃y : F̃ → B . By non-degeneracy of the
boundary theory, the kernel of b̃y is determined by Ũ1,1.

• K(y) is a Vir ⊕ Vir-module: Use the coinvariance property to show that
Ũ1,1(x, iy,ψ,φ) = 0 for all ψ implies Ũ1,1(x, iy,ψ,Lmφ) = 0 and Ũ1,1(x, iy,

ψ,Lmφ)= 0 for all ψ .
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• K(y) = K(y′) for all y, y′ > 0: There exists a global conformal transformation
H→H which leaves a point x ∈R invariant and maps y to y′. The coinvariance
property can be integrated to give Ũ1,1(x, iy,ψ,φ)= Ũ1,1(x, iy

′,ψ ′, φ′), where
ψ ′ and φ′ are obtained from ψ and φ by an appropriate exponential of modes L0,
L1, L0, L1. Using the previous point we see that φ ∈K(y′) implies φ′ ∈K(y′)
and thus φ ∈ K(y). Together with the inverse transformation one finds K(y) =
K(y′).

To see (ii), let K be the kernel of b(B)y and let e :K→ F(B) be the embedding
map. The triangle

K
e





0 ���
��

��
F(B)

b(B)y����
��

��

B

(2.34)

commutes for all y > 0 (since the kernel is independent of y). By the terminal object
property, the map K→ F(B) which makes the above triangle commute is unique,
and therefore e= 0. Hence also K = {0}.

Part (iii) is now trivial. The existence of ι follows from the terminal object prop-
erty. Since b̃y = b(B)y ◦ ι with b̃y and b(B)y injective, also ι must be injective. �

Remark 2.17 That the candidate bulk-boundary map b̃ in a pair (F̃ , b̃) is injective
has the physical interpretation that all bulk fields can be distinguished in upper half
plane correlators. If a bulk field φ from the kernel of the bulk-boundary map is
inserted in a correlator on the upper half plane, this correlator vanishes, irrespective
of the other field insertions. Thus by the above lemma, the space F(B) is maximal
in the sense that any candidate space of bulk fields (F̃ , b̃), for which all bulk fields
can be distinguished in upper half plane correlators, can be embedded in F(B). This
embedding is compatible with the candidate bulk-boundary map.

It remains to address the question of existence of the terminal object (F (B),
b(B)), to see how the OPE of bulk fields in F(B) is determined, to verify its asso-
ciativity and commutativity, and to investigate the compatibility of bulk and bound-
ary OPE with the bulk-boundary map b(B). To do so, it is best to leave behind the
infinite dimensional vector spaces underlying F(B) and B and the infinite set of
coinvariance conditions on the correlators, and to take a fresh look at the problem
from the more abstract viewpoint of algebras in braided monoidal categories.8

8We should also address the non-degeneracy of the 2-point correlator and verify modular invari-
ance. Unfortunately, we currently do not know how to do this at the level of generality used in
Sect. 3. We can only point to non-logarithmic rational CFTs, where everything works as it should
[13, 34], and to the W1,p-series and the W2,3-model [24, 26], which give modular invariant torus
amplitudes and have a self-contragredient space of bulk fields, F(B)∼= F(B)′. The latter condition
is necessary for the existence of a non-degenerate 2-point correlator.
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3 Algebraic Reformulation

Some aspects of the consistency conditions for a CFT are analytic in nature, such
as the convergence condition (C3) for the OPE and the differential equations (C4)
to be satisfied by correlation functions. Other aspects have a combinatorial coun-
terpart which can be described using the language of algebras in braided monoidal
categories. In this section we present these counterparts, and we point out the corre-
sponding concepts from Sect. 2.

The translation is made by fixing a vertex operator algebra V as chiral symme-
try of the CFT and considering the category Rep(V) of representations of V . This
category is by definition C-linear and abelian. Under certain conditions on V , one
obtains in addition a tensor product and a braiding on Rep(V) [29, 30].

In this section, k denotes a field of characteristic 0. We will use the notation
C(U,V ) to denote the set of morphisms from an object U to an object V in a cate-
gory C. The categories C we will consider have the following properties:

• C is k-linear, abelian, and satisfies finiteness conditions detailed in Sect. 3.2.
• If C is monoidal, the tensor product functor is k-linear and right exact in both

arguments.9

For the algebraic constructions presented in this section, it is irrelevant whether C is
realised as representations of some vertex operator algebra V or not.

We assume some familiarity with abelian categories, exact functors, monoidal
categories, monoidal functors, and braidings; the standard reference is [37]. Other
notions, such as conjugates, the Deligne product and related constructions, and al-
gebras in monoidal categories, are reviewed in Sects. 3.1–3.4. The main point of
this section is the notion of the ‘full centre’, introduced in Sect. 3.5, which is the
algebraic implementation of the construction of a bulk theory form a boundary the-
ory described in Sect. 2.5. Some properties related to the full centre are discussed in
Sect. 3.7.

3.1 Conjugates

In many of the constructions below we will need that every objectU ∈ C has a conju-
gate object U∗. The extra structure we demand to come along with this conjugation
is summarised in

Condition (C): The category C is equipped with an involutive contragredient
k-linear functor (−)∗ : C→ C, together with a natural family of isomorphisms
δU : U → U∗∗ which satisfy (δU )∗ = (δU∗)−1 : U∗∗∗ → U∗ for all U ∈ C. Fur-
thermore, C is equipped with a family of isomorphisms πU,V : C(U,V ∗)→
C(U ⊗ V,1∗), natural in U and V .

9For monoidal C, we do not require the tensor unit 1 to be simple. Neither do we require it to be
absolutely simple, that is, we do not impose that the space of endomorphisms of 1 is k · id1.



114 I. Runkel et al.

We do not demand that there be maps evU : U∗ ⊗ U → 1 and coevU : 1 →
U ⊗ U∗ which satisfy the properties of a categorical dual. Indeed, this property
fails in the W2,3-example, see Sect. 4.1 below. We do also not demand the (weaker)
property that (U ⊗ V )∗ be isomorphic to V ∗ ⊗ U∗ (which also fails in the W2,3-
example).

Remark 3.1 Condition (C) was introduced in Sect. 3.1 in [25] (there, the condi-
tion (δU )∗ = (δU∗)−1 was not spelled out). It is motivated by the relation of Hom-
spaces and spaces of conformal blocks on the sphere in the case C = Rep(V) for
a suitable vertex operator algebra V . Then R∗ is the contragredient representa-
tion R′ of R (see Notation I:2.36 in [30] and (2.15)) and δR is the natural iso-
morphism from a graded vector space with finite-dimensional homogeneous com-
ponents to its graded double dual, which indeed satisfies (δR)∗ = (δR∗)−1. De-
note by ⊗f the fusion-tensor product in Rep(V). The definition of π is moti-
vated by the observation that HomV (R ⊗f S,T ) is isomorphic to the space of
three-point conformal blocks on the Riemann sphere C ∪ {∞} with insertions of
R and S at x and y, say, and of the contragredient T ∗ of T at a point z. Since
the position of the insertion points are arbitrary, this space of conformal blocks is
also isomorphic to HomV (R ⊗f T ∗, S∗). Furthermore, the space of blocks does
not change by inserting the vertex operator algebra V itself. Thus, with S = V ,
HomV (R,T ∗)∼=HomV (R⊗f V, T ∗)∼=HomV (R⊗f T ,V∗). In the setting of [30],
the above reasoning amounts to Proposition II:3.46.

Definition 3.2 A pairing p : U ⊗ V → 1∗ is called non-degenerate if the map
π−1
U,V (p) :U→ V ∗ is an isomorphism.

An alternative characterisation of non-degeneracy of p is that p ◦ (f ⊗ idV )= 0
implies f = 0 for all f : X→ U , and p ◦ (idU ⊗ g) = 0 implies g = 0 for all
g : Y → V (see Lemma B.7 in [25] for a proof). This justifies the name ‘non-
degenerate’. There is a canonical non-degenerate pairing

βU := πU,U∗(δU ) :U ⊗U∗ → 1∗, (3.1)

which in particular has the property that βV ◦ (h⊗ idV ∗)= βU ◦ (idU ⊗ h∗) for all
h :U→ V , see Lemma B.3.

3.2 Deligne Product

The point of this subsection is to gain some familiarity with the Deligne product
of k-linear abelian categories which will be used extensively below. A reader who
deems this too technical (or boring) could maybe have a quick glance at Defini-
tion 3.3, condition (PF) and Corollary 3.7, and then continue with Sect. 3.3.

Let A, B be two k-algebras. Denote by A-mod and B-mod the k-linear abelian
categories of finitely generated modules over these algebras. We can now ask if we



Logarithmic Bulk and Boundary Conformal Field Theory 115

can construct (A⊗k B)-mod directly from the categories A-mod and B-mod rather
than using the algebras A and B . The problem one faces is that in general not every
A⊗k B-module is a direct sum of tensor products of A-modules and B-modules.

For example, if A = B = k[x]/〈x2〉, we have A ⊗k B ∼= k[x, y]/〈x2, y2〉. The
A ⊗k B-module M = k[x, y]/〈x2, y2, x − y〉 has dimension 2 and both x and y
act non-trivially. Since up to dimension two, the only A- (or B-) module with non-
trivial action is k[x]/〈x2〉, the module M does not arise as a direct sum of tensor
products.

The passage from A-mod × B-mod (the category of pairs of objects and mor-
phisms) to (A⊗k B)-mod is a special case of the Deligne product of abelian cat-
egories (Sect. 5.1 in [9]). Given two k-linear abelian categories A, B, denote by
Funk,r.ex.(A,B) the category of k-linear right exact functors from A to B and nat-
ural transformations between them.

Definition 3.3 Let {Aσ }σ∈S be a family of k-linear abelian categories. The Deligne
product of the {Aσ }σ∈S is a pair (AS,�S), such that

(i) AS is a k-linear abelian category, and �S :∏σ∈SAσ →AS is a functor which
is k-linear and right exact in each Aσ ,

(ii) Let B be a k-linear abelian category and denote by Funmult,r.ex.(
∏
σ∈SAσ ,B)

the category of all functors which are k-linear and right exact in each Aσ . Then
for all B, the functor

(−) ◦�S :Funk,r.ex.(AS,B)−→Funmult,r.ex.

(∏

σ∈S
Aσ ,B

)
,

F �→ F ◦�S,

(3.2)

is an equivalence of categories.

We will also write the Deligne product as �σ∈SAσ , or, in case there are only a
finite number of factors with index set S = {1,2, . . . , n}, as A1 � A2 � · · ·� An.
The triangle one would like to draw for the universal property in condition (ii) is

∏
σ∈SAσ

�S




f ��������
�σ∈SAσ

∃!F��� �
�

�

B

, (3.3)

and it should be read as follows: for each f ∈ Funmult,r.ex.(
∏
σ∈SAσ ,B) there ex-

ists an F ∈ Funk,r.ex.(AS,B) such that f is naturally isomorphic to F ◦�S . Any
other F ′ with this property is naturally isomorphic to F . However, this captures
the equivalence of functor categories required in condition (ii) only on the level of
objects.
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Remark 3.4 In the algebraic reformulation of the construction in Sect. 2.5, the
Deligne product appears as follows. Let V be a suitable vertex operator algebra. The
space of boundary fields will be a representation of V , in other words, an object in
C = Rep(V). The space of bulk fields will be a representation of V ⊗C V , that is, an
object in Rep(V⊗CV). In the algebraic description, we will replace10 Rep(V⊗CV)
by C�C (or rather by C�Crev, were ‘rev’ refers to the inverse braiding, see Sect. 3.3
below).

If it exists, the Deligne product is unique up to an equivalence: Let (A′S,�′S) be
another Deligne product and set B = A′S and f = �′S in the above triangle. This
results in a functor F :AS→A′S . The converse procedure gives G :A′S→A and
their compositions have to be equivalent to the identity. To make general existence
statements, we will need the following finiteness condition (cf. Sect. 2.12.1 in [9]):

Condition (F): The category is k-linear and abelian, each object is of finite
length,11 and all Hom-spaces are finite-dimensional over k.

By Proposition 5.13 in [9], if each Aσ satisfies condition (F) then the Deligne prod-
uct AS ≡�σ∈SAσ exists and equally satisfies condition (F); for each Xσ ,Yσ ∈Aσ ,
the functor �S gives an isomorphism

⊗

k,σ∈S
Aσ (Xσ ,Yσ )

∼−→AS(�σ∈SXσ ,�σ∈SYσ ). (3.4)

A stronger condition than (F) is

Condition (PF): The category is k-linear and abelian, and it has a projective
generator P whose endomorphism space is finite-dimensional over k.

That P is a projective generator means that P is projective and for every U ∈ A
there is an m ∈N and a surjection P⊕m→U , i.e. every object in A is a quotient of
somem-fold direct sum of P ’s. Since A(P,P ) is finite-dimensional, so are all other
morphism spaces in A (pick projective resolutions). Since P has finite composition
series (or A(P,P ) would have infinite dimension since P would have non-zero
maps to every subobject in the descending chain), so does every object in A. Thus
(PF)⇒ (F). Categories satisfying (PF) have the following convenient description:

Theorem 3.5 (Corollary 2.17 in [9]) A satisfies condition (PF) if and only if there
exists a unital finite-dimensional k-algebraA such that A is equivalent, as a k-linear
category, to the category Repf.d.(A) of finite dimensional (over k) right A-modules.

10We are not aware of a statement in the vertex operator algebra literature that says Rep(V ⊗C

W)= Rep(V)� Rep(W), but it seems very natural to us that this property should hold, at least for
‘sufficiently nice’ V and W , e.g. when their representation categories satisfy condition (PF) below.
11An object A has finite length if there is a chain of subobjects 0=A0 ⊂A1 ⊂A2 ⊂ · · · ⊂An−1 ⊂
An =A such that each Si =Ai/Ai−1 is non-zero and simple. The Si are called composition factors
and n is the composition length.
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The proof is maybe instructive to gain some intuition for the finiteness condition
(PF); for the convenience of the reader we include it in Appendix B.1. The next the-
orem confirms the motivation for studying Deligne products which was stated in the
beginning of this subsection. It is proved (in greater generality) in Proposition 5.3
in [9]; we sketch a proof in our simpler situation.

Theorem 3.6 Let A, B be finite-dimensional unital k-algebras. Then

Repf.d.(A)� Repf.d.(B)= Repf.d.(A⊗k B). (3.5)

Sketch of proof Write A= Repf.d.(A), B = Repf.d.(B), D = Repf.d.(A⊗k B). The
functor � : A× B→ D is (M,N) �→M ⊗k N , seen as an A⊗k B right module,
and (f, g) �→ f ⊗k g for module maps f , g. (Since k is a field, � is actually exact
in each argument, not only right exact, cf. Corollary 5.4 in [9].)

Let E be a k-linear abelian category. We need to show that (−)◦� gives an equiv-
alence of functor categories Funk,r.ex.(D,E)→ Funmult,r.ex.(A× B,E), see (3.2).
The point is that a k-linear, right exact functor F :D→ E is fixed by F(A⊗k B),
and by F(f ) for all right module endomorphisms ofA⊗k B . To see this, just express
an arbitrary finite-dimensional A⊗k B right module M via the first two terms in a
free resolution, (A⊗k B)⊕n→ (A⊗k B)⊕m→M→ 0 for appropriate m,n ∈ Z≥0.
Similarly, a functor G : A × B→ E which is k-linear and right exact in each ar-
gument is fixed by G(A,B) and G(f,g) for all right module endomorphisms f of
A and g of B . From this one derives that (−) ◦� is essentially surjective. Natural
transformations are equally determined by evaluating them on A⊗k B , respectively
on (A,B), and from this one can deduce that (−) ◦� is full and faithful. �

Corollary 3.7 If A and B satisfy property (PF), then so does A�B. If P andQ are
projective generators of A and B, respectively, then P �Q is a projective generator
of A�B.

Proof By the explicit construction in Appendix B.1 we have A∼= Repf.d.(A) as k-
linear abelian categories for the choice A=A(P,P ), and also B ∼= Repf.d.(B) for
B = B(Q,Q). Then by Theorem 3.6 we may take A�B ≡ Repf.d.(A⊗k B). With
this choice, P �Q=A⊗k B , which indeed is a projective generator. �

Natural transformations of right exact functors whose domain is a Deligne prod-
uct are determined by their action on ‘product objects’. We will use this a number
of times, so let us give a short proof (the statement holds for �σ∈SAσ , but for nota-
tional simplicity we only give the case with two factors).

Lemma 3.8 Let A, B satisfy property (F). Let C be a k-linear abelian category, let
F,G ∈ Funk,r.ex.(A� B,C) and let α,β : F ⇒G be natural transformations. The
following are equivalent:

(i) αX = βX for all X ∈A�B,
(ii) αA�B = βA�B for all A ∈A, B ∈ B.
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Proof We need to check (ii) ⇒ (i). Write F̂ = F ◦� and Ĝ=G ◦�. The functor
(−) ◦ � maps natural transformations F ⇒ G to natural transformations F̂ ⇒ Ĝ

via

{ηX}X∈A�B �−→ {ηA,B}(A,B)∈A×B, where ηA,B := ηA�B. (3.6)

By condition (ii) in Definition 3.3, the map (3.6) is an isomorphism and hence β is
uniquely determined by its values on all A�B . �

We will be interested in the case that a category C satisfies property (F) and is in
addition monoidal with k-linear right exact tensor product. Then the tensor product
⊗C : C × C→ C gives us a right exact functor

TC : C � C −→ C, (3.7)

such that A ⊗C B = TC(A � B) and analogously for morphisms. Let now D be
another such category. Then C � D is monoidal with right exact tensor product
given by

⊗C�D =
[
(C �D)× (C �D) �−→ C �D � C �D
∼−→ C � C �D �D TC�TD−−−−→ C �D

]
, (3.8)

for details see Sects. 5.16–5.17 in [9]. The unnamed isomorphism is induced by the
functor C×D× C×D→ C× C×D×D which exchanges the middle two factors.
In particular, for A,B ∈ C and U,V ∈D,

(A�U)⊗C�D (B � V )= (A⊗C B)� (U ⊗D V ). (3.9)

3.3 Braiding

For this subsection we fix a braided monoidal k-linear abelian category C which
satisfies property (F), and which has a k-linear right exact tensor product. In the
previous subsection we saw that C � C is again monoidal with right exact tensor
product. We will use the braiding on C for three related constructions:

• turn the functor TC : C � C→ C from above into a tensor functor,
• equip the category C � C with a braiding,
• define a ‘mixed braiding’ with one object from C � C and one object from C.

Let us start with the monoidal structure on T ≡ TC . The tensor product of C � C
will be denoted by ⊗C2 . We have to give isomorphisms

T2;X,Y : T (X)⊗C T (Y )→ T (X⊗C2 Y), T0 : 1→ T (1 � 1)≡ 1⊗C 1, (3.10)

where T2;X,Y is natural inX,Y ∈ C�C. T2 and T0 are required to satisfy the hexagon
and triangle identity (given explicitly in (3.28) and (3.29) below for a lax monoidal
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functor). For T0 one takes the inverse unit isomorphism of C. For T2, consider first
the two functors from C×4 to C given by

(A,B,U,V ) �→ T (A�B)⊗C T (U � V )

≡ (A⊗C B)⊗C (U ⊗C V ) and (3.11)

(A,B,U,V ) �→ T
(
(A�B)⊗C2 (U � V )

)≡ (A⊗C U)⊗C (B ⊗C V ).

These are linked by the natural isomorphism (not writing out⊗C between objects)12

T̃2;(A,B),(U,V ) :=
[
(AB)(UV )

assoc.−−−→ (
A(BU)

)
V

(idA⊗c−1
U,B)⊗idV−−−−−−−−−→ (

A(UB)
)
V

assoc.−−−→ (AU)(BV )
]
. (3.12)

The defining isomorphism of the Deligne product between functor categories trans-
ports T̃2 to the desired natural isomorphism T2 in (3.10). In particular, T2 obeys
T2;U�V,A�B = T̃2;(U,V ),(A,B). The hexagon identity for T2 follows if it holds on
product objects (Lemma 3.8), and for these it reduces to the hexagon of the braiding
c of C, cf. Proposition 5.2 in [31].

Next we turn to the braiding on C � C that we wish to use. This will again
be defined by transporting a natural isomorphism, this time between two functors
C×4 → C � C

(A,B,U,V ) �→ (A�B)⊗C2 (U � V )≡ (A⊗C U)� (B ⊗C V ) and

(A,B,U,V ) �→ (U � V )⊗C2 (A�B)≡ (U ⊗C A)� (V ⊗C B).
(3.13)

The natural isomorphism we choose is c̃(A,B),(U,V ) = cA,U � c−1
V,B . The defining

property of the Deligne product provides a natural isomorphism cX,Y :X⊗C2 Y →
Y ⊗C2 X which satisfies

cA�B,U�V =
[
(A�B)⊗C2 (U � V )

cA,U�c−1
V,B−−−−−−→ (U � V )⊗C2 (A�B)

]
. (3.14)

One verifies that the hexagon condition for the braiding on C implies the hexagon
for c in C � C on product objects; by Lemma 3.8 it then holds on all of C � C. We
will denote the category C � C with tensor product (3.9) and braiding (3.14) by

C � Crev. (3.15)

Finally, we turn to the mixed braiding between C � Crev and C. The relevant
functors C×3 → C are L̃(A,B,U) = (A ⊗C B) ⊗C U and R̃(A,B,U) = U ⊗C

12The convention to use c−1 and not c for T2 agrees with Sect. 2.4 in [34] but it is opposite to Sect. 7
in [7]. This should be taken into account when referring to proofs in [7]. We use the c−1 convention
to make Lemma 3.9 true in the form given below. In the context of CFT, the inverse braiding
convention means that in the graphical notation ‘lines corresponding to holomorphic insertions go
on top’.
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(A⊗C B). Between these we have the natural isomorphism ϕ̃A,B,U : L̃⇒ R̃ given
by the string diagram (to be read the optimistic way, i.e. upwards from bottom to
top)

(3.16)

In terms of formulas, this translates as13

ϕ̃A,B,U = α−1
U,A,B ◦ (cA,U ⊗C idB) ◦ αA,U,B ◦

(
idA ⊗C c

−1
U,B

) ◦ α−1
A,B,U . (3.17)

From the Deligne product, we obtain a natural isomorphism ϕ between L,R : C �
C � C→ C such that ϕA�B�U = ϕ̃A,B,U . We will most often use ϕ in the form

ϕX,U := ϕT (X)�U : T (X)⊗C U −→U ⊗C T (X); X ∈ C � Crev, Y ∈ C. (3.18)

There is an alternative way to define ϕX,U by transporting the braiding from C�Crev

to C with T . By the next lemma, these two possibilities give the same result.

Lemma 3.9 For X ∈ C � Crev and U ∈ C, the following diagram commutes.

T (X)⊗C U
∼





ϕX,U

��

T (X)⊗C T (U � 1)
T2



 T (X⊗C2 (U � 1))

T (cX,U�1)

��
U ⊗C T (X)

∼


 T (U � 1)⊗C T (X)

T2


 T ((U � 1)⊗C2 X)

(3.19)

Proof By Lemma 3.8 it is enough to verify commutativity of the diagram on product
objects X =A�B . Drawing the corresponding string diagrams using (3.12), (3.14)
and (3.17) one finds the string diagram (3.16) for both paths. �

With the help of the above lemma, it is easy to use identities for the braiding on
C � Crev to obtain identities for ϕ. We will need

ϕX⊗C2Y,U =
[
T (XY)U

T −1
2 ⊗idU−−−−−→ (T XT Y)U

∼−→ TX(T YU)
idTX⊗ϕY,U−−−−−−→ TX(UT Y)

∼−→ (T XU)T Y
ϕX,U⊗idT Y−−−−−−→ (UTX)T Y

∼−→U(TXT Y)
idU⊗T2−−−−→UT (XY)

]
, (3.20)

13Our convention for associators is αX,Y,Z :X⊗ (Y ⊗Z)→ (X⊗ Y )⊗Z.
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which follows form applying T to the hexagon identity cX⊗C2Y,U�1 = (cX,U�1⊗C2

idY )◦ (idX⊗C2 cY,U�1) (we have omitted the associators) and rearranging terms via
Lemma 3.9.

Instead of ϕX,U , which takes one argument from C�Crev and one from C, we can
use the diagram (3.19) to define ϕ̂X,Y , which takes both arguments from C � Crev

via

T (X)⊗C T (Y )
T2





ϕ̂X,Y

���
�
�

T (X⊗C2 Y)

T (cX,Y )

��
T (Y )⊗C T (X)

T2


 T (Y ⊗C2 X)

(3.21)

The following observation will be important below.

Lemma 3.10 For X,Y ∈ C � Crev we have the identity

ϕX,T (Y ) = ϕ̂X,Y : T (X)⊗C T (Y )→ T (Y )⊗C T (X). (3.22)

Proof From (3.19) and (3.21) we see that we have to establish commutativity of

T (X⊗C2 Y )

T
−1
2





T (cX,Y )

��

T (X)⊗C T (Y )
∼



 T (X)⊗C T (T (Y )� 1)
T2



 T (X⊗C2 (T (Y )� 1))

T (cX,T (Y )�1)

��
T (Y ⊗C2 X)

T
−1
2



 T (Y )⊗C T (X)
∼



 T (T (Y )� 1)⊗C T (X)
T2



 T ((T (Y )� 1)⊗C2 X)

(3.23)

By Lemma 3.8, it is enough to verify this for X = A� B and Y = U � V for all
A,B,U,V ∈ C. In this case, the above diagram reads (not writing ⊗C , brackets
between objects, and associators)

AUBV

idA⊗cU,B⊗idV




cA,U⊗c−1
V,B

��

ABUV

∼


 ABUV 1

idA⊗c−1
UV,B⊗id1



 AUVB1

cA,UV⊗c−1
1,B

��
UAVB

idU⊗cA,V⊗idB


 UVAB

∼


 UV 1AB

idUV⊗c−1
1,A⊗idB



 UVA1B

(3.24)

That this diagram commutes can be checked easily by drawing string diagrams. �

Remark 3.11 The functor T is central in the sense of Sect. 2 in [8]. Namely, it
factors through the braided tensor functor G from C � Crev to the monoidal centre

of C as TC = [C � Crev G−→Z(C) forget−−−→ C]; we refer to Sect. 2 in [8] for details.
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3.4 Algebras

We recall the definition of algebras in monoidal categories, and of commutative
algebras in braided monoidal categories. In the category of vector spaces, these give
the usual notions of algebras/commutative algebras.

Definition 3.12

(i) An algebra in a monoidal category C is an object A ∈ C together with a mor-
phism μ :A⊗A→A which is associative in the sense that

A⊗ (A⊗A)
idA⊗μ





αA,A,A

��

A⊗A μ

��������

A

(A⊗A)⊗A
μ⊗idA



 A⊗A μ

��������

(3.25)

commutes. A is called unital if it is equipped with a morphism ι : 1→ A such
that

1⊗A
ι⊗idA





λA ������������
A⊗A

μ

��

A⊗ 1
idA⊗ι
��

ρA������������

A

(3.26)

commutes. Here α is the associator of C and λ, ρ are the unit isomorphisms.
An algebra homomorphism from (A,μ) to (A′,μ′) is a morphism f :A→A′
such that f ◦ μ = μ′ ◦ (f ⊗ f ). If A and A′ are unital, f is called unital if
f ◦ ι= ι′.

(ii) An algebra in a braided monoidal category is called commutative if μ ◦
cA,A = μ.

The tensor unit 1 ∈ C with multiplication μ= λI = ρI and unit ι= id1 is always
a commutative unital algebra. A similar class of examples are objects S ∈ C such that
C(S,S)= k · idS and S⊗C S ∼= S. Each isomorphism S⊗C S→ S is a commutative
associative multiplication on S (not necessarily unital), and of course all these mul-
tiplications give isomorphic algebras, see Appendix B.2. In the W2,3-model treated
in Sect. 4, this will give three examples of algebras (namely the representations W ,
W∗ and W(0), see Sect. 4 for details).

Suppose C has property (C). By a pairing on an algebra A in C we mean a mor-
phism π :A⊗A→ 1∗. The pairing is called invariant if

π ◦ (idA ⊗μ)= π ◦ (μ⊗ idA) ◦ αA,A,A. (3.27)
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Table 1 Relation between the algebraic notions of this section and the discussion of CFT in
Sect. 2. These relations have been proved for non-logarithmic rational CFTs (see [13, 18, 28, 33]).
In general the table should be understood as ‘similarity in structure’. This table continues after
some preparation with Table 2 below

Conformal field theory Algebraic counterpart

RepV , for a vertex operator algebra V which is
‘logarithmic-rational’: the tensor product
theory of [30] should apply and it should only
have a finite number of irreducible sectors

A braided monoidal category C which is
C-linear, abelian, with right exact tensor
product, and which satisfies the finiteness
condition (PF) and has conjugates in the sense
of condition (C)

(B,m,ω∗), a non-degenerate boundary theory
as in Definitions 2.13 and 2.14

An algebra B ∈ C with associative product
m : B ⊗C B→ B and a map ω∗ : B→ 1∗ such
that the pairing ω∗ ◦m on B is non-degenerate

(F,M,Ω∗), a non-degenerate CFT on C as in
Definitions 2.4 and 2.7

An algebra F ∈ C � Crev with associative,
commutative product M : F ⊗C2 F → F and a
map Ω∗ : F → 1∗ � 1∗ such that the pairing
Ω∗ ◦M is non-degenerate

(F,M), a CFT on C with background states as
defined in Sect. 2.2

An algebra F ∈ C � Crev with associative,
commutative product M : F ⊗C2 F → F

If A is unital, giving an invariant pairing is the same as giving a morphism τ :
A→ 1∗ via π = τ ◦ μ. The notion of non-degeneracy of a paring on A is that of
Definition 3.2.

A brief comparison between these algebraic notions and the discussion of CFT
in Sect. 2 is given in Table 1.

It is not surprising that a monoidal functor between two monoidal categories
transports algebras to algebras. However, also the weaker notion of a lax monoidal
functor is sufficient for this purpose.

Definition 3.13 Let A and B be two monoidal categories and let F :A→ B be a
functor. Then F is called lax monoidal if it is equipped with morphisms F0 : 1B→
F(1A) and F2;U,V : F(U) ⊗B F(V )→ F(U ⊗A V ), the latter natural in U , V ,
such that for all U,V,W ∈A,

F(U)⊗B (F (V )⊗B F(W))

αBFU,FV,FW




idFU⊗F2;V,W
��

(F (U)⊗B F(V ))⊗B F(W)

F2;U,V⊗idFW
��

F(U)⊗B F(V ⊗AW)

F2;U,VW
��

F(U ⊗A V )⊗B F(W)

F2;UV,W
��

F(U ⊗A (V ⊗AW))

F(αAU,V,W )


 F((U ⊗A V )⊗AW)

(3.28)
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and

1B ⊗B F(U)

F0⊗idFU

��

λBFU


 F(U)

F(1A)⊗B F(U)
F2;1,U



 F(1A ⊗A U)

F(λAU )

��
,

F (U)⊗B 1B

idFU⊗F0

��

ρBFU


 F(U)

F(U)⊗B F(1A)
F2;U,1



 F(U ⊗A 1A)

F(ρAU )

��

(3.29)

commute. If F0 and F2 are isomorphisms, F is called strong monoidal (or just
monoidal).

Let A, B be monoidal categories and let F :A→ B be a lax monoidal functor.
If (A,μ) is an algebra in A, then the image object F(A) also carries the structure
of an algebra, with associative multiplication given by

μF(A) =
[
F(A)⊗B F(A)

F2;A,A−−−→ F(A⊗A A)
F(μ)−−−→ F(A)

]
. (3.30)

If A is unital with unit ι, then so is F(A) with unit F(ι) ◦ F0. If f : A→ B is a
homomorphism of algebras in A, then F(f ) : F(A)→ F(B) is a homomorphism
of algebras in B. See Sect. 5 in [31] for details.

3.5 The Full Centre in C � Crev

In this subsection, C is assumed to be a braided monoidal k-linear abelian category
with conjugates as in (C), which satisfies the finiteness condition (PF), and which
has a k-linear right exact tensor product functor. The assumptions (PF) and (C)
will guarantee existence of the full centre of an algebra in C, to be defined now
(though much weaker conditions should be sufficient, too). Recall the definition of
the functor T : C � Crev → C from Sects. 3.2 and 3.3, as well as the mixed braiding
ϕX,A from (3.18).

Definition 3.14 Let (A,μA) be an algebra in C. The full centre in C � Crev is an
object Z(A) ∈ C � Crev together with a morphism z : T (Z(A))→ A in C such that
the following universal property holds: For all pairs (X,x) with X ∈ C � Crev and
x : T (X)→A such that the diagram

T (X)⊗C A

ϕX,A

��

x⊗C idA


 A⊗C A μA

��������

A

A⊗C T (X)
idA⊗Cx



 A⊗C A
μA

��������

(3.31)
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Table 2 Continuation of Table 1
Conformal field theory Algebraic counterpart

b̃, a ‘candidate bulk-boundary map’ from a
‘candidate space of bulk fields’ F̃ to the space
of boundary fields B of a boundary theory,
satisfying in particular the centrality condition
from Sect. 2.5

An object F̃ ∈ C � Crev and an algebra B ∈ C
together with a morphism b̃ : T (F̃ )→ B such
that b̃ ∈ Cent(F̃ ,B)

P , the category of pairs from Sect. 2.5 and the
terminal object (F (B), b(B)) in it from (2.33),
interpreted as the maximal bulk theory
compatible with the given boundary theory B

The category Cfull center(B) for a given algebra
B ∈ C and the terminal object (Z, z) in it,
where Z ∈ C � Crev is the full centre of B and
z the corresponding map T (Z)→ B

(F,M,Ω∗;B,m,ω∗;b), a CFT on the upper
half plane as in Definition 2.11, for which the
CFT on C and the boundary theory are
non-degenerate

A commutative algebra (F,M) in C � Crev

with non-degenerate pairing Ω∗ ◦M , a not
necessarily commutative algebra (B,m) in C
with non-degenerate pairing ω∗ ◦m, and an
algebra map b : T (F )→ B, such that
b ∈ Cent(F,B)

in C commutes, there exists a unique morphism ζ(X,x) :X→Z(A) such that

T (X)
T (ζ(X,x))





x ����
��

��
T (Z(A))

z�����
���

�

A

(3.32)

commutes.

The existence of the full centre will be proved in Theorem 3.24 below.
For later use we give a name to the space of maps for which the diagram (3.31)

commutes. For A an algebra in C and X ∈ C � Crev

Cent(X,A) := {
x : T (X)→A| (3.31) commutes

}
(3.33)

(‘Cent’ for centrality condition, cf. Table 2).

Remark 3.15

(i) The above definition can be recast into describing the full centre in C�Crev as a
terminal object. Namely, consider the category Cfull center(A) whose objects are
pairs (X,x) with X ∈ C � Crev and x ∈ Cent(X,A), and whose morphisms are
maps f :X→ Y in C � Crev such that

T (X)
T (f )





x ����
��

��
T (Y )

y�����
��

�

A

(3.34)
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commutes. By definition, the full centre (Z, z) of an algebra A is a terminal
object in Cfull center(A).

(ii) The full centre was introduced in [46] and Definition 4.9 in [14] in the case
that C is a modular category and is (in particular) an object in C � Crev. The
notion was then generalised to arbitrary monoidal categories (not necessarily
braided or abelian) in Sect. 4 in [7], where the full centre, if it exists, is an
object in the monoidal centre Z(C) of C. If C is modular, Z(C) ∼= C � Crev

by Theorem 7.10 in [39], and the two definitions agree (cf. Sect. 8 in [7]). In
general, Z(C) and C � Crev may not be equivalent (but T factors through Z(C),
cf. Remark 3.11). For this reason, we added the suffix ‘in C � Crev’ to the name
‘full centre’ in Definition 3.14. However, because we will only ever use the full
centre in C � Crev and never the full centre in Z(C), we will drop the suffix ‘in
C � Crev’ from now on.

Let (Z, z) be the full centre of an algebra A in C as in Definition 3.14. Suppose
we are given a morphism μZ : Z⊗C2 Z→ Z; this will later be an associative, com-
mutative product, but let us not demand that yet. Equation (3.30) defines a product
μT (Z) on T (Z). Suppose further that z intertwines μT (Z) and μA, i.e.

T (Z)⊗C T (Z)
μT (Z)





z⊗Cz

��

T (Z)

z

��

T (Z⊗C2 Z)
T (μZ)

��      
T −1

2;Z,Z

��!!!!!!

A⊗C A
μA



 A

(3.35)

commutes (we included also the definition of μT (Z)). This diagram can be read in a
second way: Starting from T (Z⊗C2Z) and following the two paths toA, we see that
it is an instance of (3.32). If we can establish (3.31) for the left path, the universal
property of (Z, z) provides us with a unique choice for μZ , which, as we will see,
is automatically associative and commutative. This is done in the next statement,
which is just Proposition 4.1 in [7] with Z(C) replaced by C � Crev. Even the proof
works in the same way. Still, as the full centre is one of the main players in this
paper we include parts of the proof in Appendix B.3.

Theorem 3.16 Let (Z, z) be the full centre of an algebra A ∈ C. There exists a
unique productμZ :Z⊗Z→ Z such that (3.35) commutes. This product is associa-
tive and commutative. If A has a unit ιA, then there exists a unique map ιZ : 1→ Z

such that

T (1)
T (ιZ)





(F0)
−1

��

T (Z)

z

��
1

ιA


 A

(3.36)
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commutes. This map is a unit for the product μZ .

In particular, z : T (Z)→A is an algebra map. It is unital if A is unital.

3.6 The Right Adjoint R of T

As in the previous subsection, C is assumed to be k-linear abelian and braided
monoidal, to satisfy (PF) and (C), and to have a k-linear right exact tensor product.
The aim of this section is to show the existence of the right adjoint R : C→ C�Crev

of the functor T : C � Crev → C and give an explicit expression for it. In the next
subsection, the adjointR will be used to give an explicit description of the full centre
and thereby prove its existence.

Consider the functor C(T (−),1∗) from C � Crev to Vect. Define R1∗ (if it ex-
ists) to be the representing object of this functor. That is, there is a natural (in X)
isomorphism of functors C � Crev → Vect,

χX : C
(
T (X),1∗

) ∼−→C2(X,R1∗). (3.37)

Here and below, C2(X,Y ) denotes the space of morphisms from X to Y in C � Crev.
We will now show that R1∗ may be written as the cokernel of a morphism between
two projective objects in C � Crev; in particular, R1∗ exists.

Let P be a projective generator of C (which exists by (PF)). By Corollary 3.7,
also C �Crev satisfies property (PF) and P �P is a projective generator of C �Crev.
Define the linear subspace N ⊂ C2(P � P,P � P ∗) to consist of all f : P � P →
P � P ∗ such that

[
P ⊗C P

T (f )−−−→ P ⊗C P
∗ βP−→ 1∗

]= 0, (3.38)

where βP is the non-degenerate pairing defined in (3.1). Let {u1, . . . , u|N |} be a basis
of N (the space is finite-dimensional by (PF)). Define the map n : (P � P)⊕|N | →
P � P ∗ as n =∑|N |

i=1 ui ◦ πi , with πi the projection to the ith direct summand.
Define R′ to be the cokernel of n, so that we have the exact sequence

(P � P)⊕|N | n−→ P � P ∗ cok(n)−−−→R′ −→ 0. (3.39)

Now consider the diagram

T ((P � P)⊕|N |)
T (n)



 P ⊗ P ∗

βP

��

T (cok(n))


 T (R′)

∃!r ′��� � � � � �


 0

1∗

(3.40)
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Since by its construction in (3.7), T is right exact, the top row of the diagram is ex-
act, i.e. T (cok(n)) is the cokernel of T (n). Because βP ◦T (n)=∑|N |

i=1 βP ◦T (ui)◦
T (πi)= 0 (by definition of the ui ), from the universal property of the cokernel we
obtain the arrow r ′ : T (R′)→ 1∗. The next theorem, whose proof can be found in
Appendix B.4, states that R′ is the object we are looking for.

Theorem 3.17 The object R′ just constructed represents the functor C(T (−),1∗),
i.e. one may take R1∗ =R′.

We will soon use the object R1∗ to construct the entire adjoint functor R, but first
we would like to state one important property of R1∗ . Given a natural transformation
(νU :U→U)U∈C of the identity functor on C, set

ν̃U =
[
U

δU−→U∗∗
(νU∗ )∗−−−−→U∗∗

δ−1
U−−→U

]
, (3.41)

where δ is the natural isomorphism Id⇒ (−)∗∗ from condition (C). Then ν̃ is again
natural in U . In particular, both � ◦ (ν × id) and � ◦ (id × ν̃) are natural transfor-
mations of � : C × Crev → C � Crev. Via the defining equivalence (3.2), these give
two natural transformations ν � id and id � ν̃ of the identity functor on C � Crev.

Theorem 3.18 Let R1∗ ∈ C � Crev be as above and let ν : IdC ⇒ IdC be a natural
transformation. Then (ν � id)R1∗ = (id � ν̃)R1∗ .

The theorem is proved in Appendix B.4.

Remark 3.19 Let V be a vertex operator algebra such that C = Rep(V) satisfies the
conditions set out in the beginning of this subsection. Then exp(2πiL0) acting on
some representation A ∈ C is an example of a natural transformation of the identity
functor (it commutes with all modes of all fields in the VOA, and it can be moved
past all intertwiners f : A→ B , i.e. it is natural in A). Theorem 3.18 states in this
case that exp(2πi · L0 ⊗C id) and exp(2πi · id⊗C L0) act in the same way on the
V ⊗C V-module R1∗ . In other words,

exp
{
2πi(L0 ⊗C id− id⊗C L0)

}∣∣
R1∗
= idR1∗ . (3.42)

In CFT terms this means that in a situation where R1∗ is the space of bulk fields,14

the partition function is invariant under the T-transformation τ �→ τ + 1.

We now turn to the right adjoint R. The involution (−)∗ on C induces an involu-
tion on C � Crev, which we also denote by (−)∗, and which also satisfies condition

14For this to be possible, we must have Z(1∗)= R(1∗) (we will see in (3.43) that R(1∗)= R1∗ ).
By Lemma 3.25 below this is true if 1∗ ∼= 1. We expect that Z(1∗) = R(1∗) also holds in the
W2,3-model (where 1∗ � 1), see Sect. 4.



Logarithmic Bulk and Boundary Conformal Field Theory 129

(C) (see Appendix B.5). We can use R1∗ and the involution (−)∗ to define a functor
R : C→ C � Crev as

R(U)= ((
U∗� 1

)⊗C2 (R1∗)
∗)∗, R(f )= ((

f ∗� id1
)⊗C2 id(R1∗ )∗

)∗
. (3.43)

Note that R(1∗)∼=R1∗ .

Theorem 3.20 The functor R is a right adjoint for T .

The proof and the adjunction isomorphisms are given in Appendix B.5. On gen-
eral grounds, the functor R, being adjoint to a monoidal functor, is lax monoidal
(see, e.g., Lemma 2.7 in [34]). The structure maps R0 and R2 can equally be found
in Appendix B.5. Thus, for an algebra A ∈ C, R(A) is an algebra in C � Crev with
multiplication (3.30).

Remark 3.21

(i) Since R is a right adjoint functor, it is left exact. This can also be seen explicitly
from (3.43), namely

R = [
Cop (−)∗−−→ C (−)�1−−−−→ C � Crev

(−)⊗C2 (R1∗ )∗−−−−−−−−→ C � Crev (−)∗−−→ (C � Crev)op], (3.44)

where (−)∗ is exact, (−)� 1 is exact (see the beginning of the proof of The-
orem 3.6), and (−)⊗C2 (R1∗)∗ is right exact. Thus R is a right exact functor
Cop → (C � Crev)op which is the same as a left exact functor C→ C � Crev.

(ii) Suppose there are isomorphisms (U ⊗C V )∗ → V ∗ ⊗C U∗, natural in U and V .
Then, firstly, 1∼= (1∗)∗ ∼= (1⊗C 1∗)∗ ∼= 1⊗C 1∗ ∼= 1∗. Secondly, the above for-
mula for R simplifies to R(U) = R1 ⊗C2 (U � 1), and analogously for R(f ).
In this formulation, R is clearly right exact, so that together with (i) we see that
R is exact. Similarly, the natural isomorphism (−)∗ ◦ T ◦ (−)∗ ∼= T shows that
T is exact.

3.7 Left Centre and Full Centre

In this subsection, we will express the full centre of an algebra A as the ‘left
centre’—to be defined momentarily—of the adjoint functor R applied to A. As be-
fore, C is assumed to be k-linear abelian and braided monoidal, to satisfy (PF) and
(C), and to have a k-linear right exact tensor product.

In the braided setting, one distinguishes three different notions of the centre of
an algebra: the left centre, the right centre and the full centre. From these, the left
and right centre are subobjects of the algebra itself, while—as we have seen in Def-
inition 3.14—the full centre lives in a different category. The left and right centres
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were introduced in [50] and appeared in various incarnations in [7, 17, 40]. The
following definition is taken from Sect. 5 in [7].

Definition 3.22 Let B be an algebra in a braided monoidal category B. The left
centre of B is terminal among all pairs (U ∈ B, u :U→ B), such that

U ⊗B B

cU,B

��

u⊗BidB


 B ⊗B B μB

��������

B

B ⊗B U
idB⊗Bu



 B ⊗B B
μB

��������

(3.45)

commutes. Equivalently, the left centre is an object Cl(B) in B together with a
morphism e : Cl(B)→ B such that the pair (Cl(B), e) satisfies (3.45), and such
that for every other pair (U,u) satisfying (3.45) there exists a unique arrow ũ :
U→ Cl(B) such that e ◦ ũ= u.

Remark 3.23

(i) There is an analogous definition for the right centre, see [40, 50].
(ii) If the category B is in addition abelian and has conjugates as in (C), the left

centre of an algebra B can be expressed as a kernel. This shows at the same
time that the left centre exists and that e : Cl(B)→ B is injective, i.e. Cl(B) is
a subobject of B . See Appendix B.6 for details.

(iii) Cl(B) carries a unique algebra structure such that e : Cl(B)→ B is an alge-
bra map. This algebra structure on Cl(B) is commutative. If A is unital, so is
Cl(A). See [7, 40, 50] for details.

In the previous subsection we gave the direct definition of the full centre as first
formulated in Sect. 4 in [7]. The original definition in Definition 4.9 in [14] proceeds
in two steps: first, one applies the adjoint R of T to the algebra A and second, one
finds the left centre ofR(A). The same works in the present setting, as we now show.
The proof is the same as in Theorem 5.4 in [7], we reproduce an adapted version
in Appendix B.6. Denote the adjunction natural transformation T R⇒ Id by ε, cf.
(B.46).

Theorem 3.24 Let A be an algebra in C. The pair (Z, z) with

Z = Cl
(
R(A)

)
, z= [

T
(
Cl

(
R(A)

)) T (e)−−→ T
(
R(A)

) εA−→A
]

(3.46)

is the full centre of A.

In particular, since R exists by Theorem 3.20 and the left centre exists by Re-
mark 3.23(ii), the full centre of an algebra exists under the assumptions set out in
the beginning of this subsection.
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Even if A is a commutative algebra, R(A) need not be commutative and one still
needs to take the left centre to arrive at Z(A). However, the next lemma gives a
simple condition in addition to commutativity which guarantees Z(A)=R(A); this
will be useful in Sect. 4. An object S ∈ C is called transparent if cU,S ◦cS,U = idS⊗U
for all U ∈ C.

Lemma 3.25 If (S,μS) is a commutative algebra in C and S is transparent in C,
then we can take (Z(S), z)= (R(S), εS). In particular, Z(1)=R(1).

Proof From (3.17) one checks that for transparent S we have ϕ̃A,B,S = cA⊗B,S .
Thus also ϕX,S = cT (X),S . Condition (3.31) is then true for all x : T (X)→ S as by
commutativity of S we have μS ◦ cS,S = μS . But then the universal property of the
full centre reduces to that in Lemma B.2(ii) with U = S, R′ = Z(S) and r ′ = z.
By part (i) of that lemma, R′ = R(S) and r ′ = ξ−1

R(S),S(idR(S))= εS , see (B.44) and
(B.46). �

Remark 3.26 A different approach to finding algebraic counterparts to logarithmic
CFTs on C is taken in [19]. There, the category C is chosen to be H -Mod for a cer-
tain Hopf algebra H (in more detail, finite dimensional representations of a finite-
dimensional factorisable ribbon Hopf algebra) and C � Crev ∼= H -Bimod (see Ap-
pendix A.3 in [19]). In H -Bimod the coregular bimodule H ∗ is studied and shown
to be a commutative Frobenius algebra (Propositions 2.10 and 3.1 in [19]). In ad-
dition, H ∗ satisfies certain modular invariance properties (Theorem 5.6 in [19]). In
Appendix B in [19], the bimodule H ∗ is proposed to be a candidate bulk theory
for a logarithmic CFT in case H -Mod ∼= RepV for the vertex operator algebra V
encoding the chiral symmetry. In the setting of the present paper, H ∗ corresponds
to R(1).

4 The W2,3-Model with c = 0

In this section we look more closely at one particular class of examples, namely
conformal field theories built from representations of the W2,3 vertex operator al-
gebra. This symmetry algebra was chosen because it demonstrates that the level of
generality assumed in Sect. 3 is indeed needed in the treatment of interesting exam-
ples.

We start in Sect. 4.1 with a brief collection of what is known or expected about
the representation theory of theW2,3 vertex operator algebra. In Sect. 4.2 it is shown
how the formalism of finding the maximal bulk theory for a given boundary theory
can produce the (trivial) c= 0 Virasoro minimal model. A non-trivial bulk theory is
discussed in Sects. 4.3–4.5; this bulk theory is logarithmic and can be understood as
a ‘refinement’ of the c= 0 minimal model.
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4.1 The W -Algebra and Some of Its Representations

Let Ver(h= 0, c= 0) be the Virasoro Verma module generated by the state Ω with
L0Ω = CΩ = 0. It has a maximal proper submodule which is generated by the two
vectors

n1 = L−1Ω, n2 =
(
L−2 − 3

2
L−1L−1

)
Ω. (4.1)

Since words in L−1 and L−2 acting on Ω span Ver(0,0), the quotient Ver(0,0)/
〈n1, n2〉 is just CΩ with trivial Vir-action. This describes the vacuum representa-
tion of the Virasoro minimal model with c = 0, which is trivial in the sense that
it is a two-dimensional topological field theory for the commutative algebra C, cf.
Remark 2.6. The module V ≡ Ver(0,0)/〈n1〉 is infinite dimensional and carries the
structure of a vertex operator algebra with Virasoro element T = L−2Ω �= 0 (note
that Ver(0,0) is not itself a vertex operator algebra because the vacuum Ω is not
annihilated by the translation operator L−1). The VOA V has an infinite number of
distinct irreducible representations (see Theorem 4.4 in [15] and Sect. 2.3 in [38]).
To be able to apply the discussion in Sect. 3, we can pass to a larger VOA W ⊃ V ,
which is the chiral symmetry algebra for the W2,3-model [1, 12], and is obtained as
an extension of V by two fields of weight 15. Its character reads

χW (q) = 1+ q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + 8q9 + 12q10

+ 14q11 + 21q12 + 24q13 + 34q14 + 44q15 + 58q16 + · · · . (4.2)

It turns out that χW (q) differs from the character of V only starting from q15,
namely χV (q) = · · · + 41q15 + 55q16 + · · · (so e.g. there are three new fields at
weight 15). The VOA W is C2-cofinite [1] and has 13 irreducible representations
[1, 12], which we label by their lowest L0-weight:

s = 1 s = 2 s = 3

r = 1 0,2,7 0,1,5 1
3 ,

10
3

r = 2 5
8 ,

33
8

1
8 ,

21
8

−1
24 ,

35
24

(4.3)

Here, the two entries ‘0’ refer to the same irreducible representation W(0)≡ CΩ .
We write W(h) for the irreducible W-representation of lowest L0-weight h. Their
characters (from [12]) are listed in our notation in Appendix A.1 in [25].

At this point we note the first oddity of the W2,3-model: the vertex operator al-
gebra W is not one of the irreducible representations: it is indecomposable but not
irreducible. Indeed, Ω is a cyclic vector (hence indecomposability) and the stress
tensor T = L−2Ω generates a W-subrepresentation (on the level of Virasoro modes,
this follows since LnT = 0 for n > 0, where L2T = 0 is a special feature of c= 0).
Specifically, W is the middle term in a non-split exact sequence

0−→W(2)−→W −→W(0)−→ 0. (4.4)
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This brings us to the second oddity. Denote by R∗ the contragredient represen-
tation of a representation R (see, e.g. Definition I:2.35 in [30]). Then W∗

�W , as
can be seen for example from their socle filtration15

W :
0

2

, W∗ :
2

0

. (4.5)

The above diagrams show the semi-simple quotients of successive submodules in
the socle filtration. For example, the largest semi-simple subrepresentation of W
is W(2). Quotienting by W(2), one obtains a representation whose largest semi-
simple subrepresentation is W(0), and this accounts for all of W (this is just the
statement of the sequence (4.4) and the fact that it is non-split). For W∗, the largest
semi-simple subrepresentation is W(0) and the quotient is isomorphic to W(2).

We have now pretty much reached the frontier of established mathematical truth
regarding the W2,3-model. Hence it is time for the following

Disclaimer: The statements concerning the structure of the W2,3-model in the
remainder of Sect. 4 should be treated as conjectures, even if we refrain from
writing ‘conjecturally’ in every sentence.

The first statement under the umbrella of the above disclaimer is: The tensor product
theory of [30] turns C ≡ Rep(W) into a braided monoidal category

+ which has property (PF) from Sect. 3.2,
+ whose tensor product functor is right exact in each argument,
+ whose contragredient functor (−)∗ has property (C) from Sect. 3.1.

The category Rep(W⊗CW) (with inverse convention for the braiding in the second
factor) is just the Deligne product C �Crev. Every irreducible W(h) has a projective
cover, which we denote by P(h). The fusion rules of the representations generated
from the 13 irreducibles and from W∗ (and from two representations Q, Q∗ which
have the socle filtration (4.5) with 2 replaced by 1) are listed in Appendix 4 in
[25] (see also [10, 12, 43]); some of the fusion rules of the projective cover P(0)
are given in Appendix B.1 in [26]. The fusion-tensor product of C will be denoted
by ⊗f .

The properties marked ‘+’ above allow one to apply the formalism in Sect. 3.
However, there are many other convenient properties which C does not have:

− C is not semi-simple (e.g. the sequence (4.4) is not split).

15The socle soc(M) of a module M is the largest semi-simple submodule contained in M . The
socle filtration of M is the unique filtration {0} =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn =M where M1
is the socle of M , M2/M1 is the socle of M/M1 and in general Mi+1/Mi is semi-simple and
equals the socle of M/Mi . The socle filtration is a unique version of the composition series. In the
latter, one iteratively picks a simple submodule and quotients by it. The composition series hence
involves choices.
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− The tensor unit 1≡W in C is not simple (cf. (4.4)).
− 1≡W is not isomorphic to its conjugate 1∗ ≡W∗ (cf. (4.5)).
− The involution (−)∗ is not monoidal, e.g. (W ⊗f W(0))∗ =W(0) and W∗ ⊗f

W(0)∗ = 0.
− The tensor product of C is not exact. For example, the functor W(0) ⊗f (−)

transports the exact sequence 0→W(0)→W∗ →W(2)→ 0 to 0→W(0)→
0→ 0→ 0, which is not exact.

− C is not rigid, i.e. not every object has a dual (in the categorical sense—not to be
confused with the contragredient representation, which always exists). Examples
are the irreducibles W(0), W(1), W(2), W(5), W(7), the contragredient W∗
of the VOA, and the projective cover P(0); we refer to Sect. 1.1.1 in [25] and
Appendix B.1 in [26] for details.

− Even if U ∈ C has a dual U∨, it may happen that U∨ � U∗, e.g. W∨ =W (the
tensor unit is self-dual in any monoidal category), but W∗

�W .

For the rest of this subsection we take a look at the most intricate16 of the W-
representations, the projective cover P(0) of W(0). It has the socle filtration (as
argued for in Appendix B.2 in [26]):

(4.6)

As before, the numbers in each row give the simple summands in the quotient of
two consecutive layers of the socle filtration. The lines indicate the action of the W -
modes; for P(0) they merely state that a vector at a given level can be transported
into any of the lower lying submodules (this is not so for P(h) with h= 1,2,5,7,
see Appendix A.1 in [26]).

There are three quasi-primary states of generalised L0-weight 0, no such states
at weight 1, two states at weight 2, and infinitely more at higher weights.17 It seems
natural to us that the quasi-primary states up to weight 2 organise themselves under
the Virasoro action as in the following diagram (the action is given up to constants,

16Also the P(h) with h ∈ {1,2,5,7} have a socle filtration with 5 levels (see Appendix A.1 in
[26]). P(0) is ‘most intricate’ in the sense that it does not occur in the representations generated
by fusion from the 13 irreducibles and its structure has only been found by indirect reasoning.
17The character of P(0) starts as 3 + 2q + 4q2 + · · · . The two states at weight 1 are L−1-
descendants, as are two of the four states at weight 2.
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see below for the full expressions)

L0-weight 2 t
L0−2





L2 ��"
""

""
""

""





T
L2

��#
##

##
##

##

L0-weight 0 η

L−2+···
��$$$$$$$$$

L0



 ω

L−2+··· �����������

L0



 Ω

(4.7)

where L−2 + · · · stands for the operators defined by

t :=
(
L−2 − 3

2
L−1L−1 + 9

5

(
L−2 + 1

6
L−1L−1

)
L0

)
η,

T :=
(
L−2 − 3

2
L−1L−1

)
ω.

(4.8)

In more detail, let us assume that we are given a Virasoro representation with the
following properties:

1. It allows for a non-degenerate symmetric pairing such that 〈v,Lmw〉 =
〈L−mv,w〉.

2. It has a cyclic vector η which is primary (i.e. the Vir-action on η generates the
entire representation and Lmη= 0 for all m> 0).

3. η generates a rank three Jordan cell for L0 of generalised eigenvalue 0; we set

ω := L0η, Ω := L0ω. (4.9)

4. CΩ is the trivial Virasoro representation: LmΩ = 0 for all m ∈ Z.

Let us draw some conclusions from these assumptions. Firstly, 〈ω,Ω〉 = 〈L0η,

(L0)
2η〉 = 〈η, (L0)

3η〉 = 0 and similarly 〈Ω,Ω〉 = 0, so that we must have
〈η,Ω〉 �= 0 by non-degeneracy. Hence also 〈ω,ω〉 = 〈L0η,L0η〉 = 〈η,Ω〉 �= 0.
Suppose that 〈η,ω〉 �= 0. Then we can replace η � η′ := η + (const)ω such that
〈η′,L0η

′〉 = 0. Next, if 〈η′, η′〉 �= 0 we replace η′ � η′′ := η′ + (const)Ω such that
〈η′′, η′′〉 = 0. We will henceforth assume that both has been done. Altogether, the
pairing on the states of generalised L0-eigenvalue 0 is, for some normalisation con-
stant N �= 0:

〈 , 〉 η ω Ω

η 0 0 N

ω 0 N 0
Ω N 0 0

(4.10)
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Secondly, using points 3. and 4. above, one verifies with a little patience that for t
and T as defined in (4.8)

L1t = 0, L1T = 0,

L2t = −5ω+ 9Ω, L2T = −5Ω,

(L0 − 2)t = T , (L0 − 2)T = 0.

(4.11)

It is then easy to compute the pairing on the weight 2 states (the pairing of a quasi-
primary with an L−1-descendant vanishes; we give the pairing restricted to t , T ).
For example, using invariance of the pairing and the relations (4.11) gives

〈T , t〉 =
〈
ω,

(
L2 − 3

2
L1L1

)
t

〉
=−5〈ω,ω〉. (4.12)

Altogether, the pairing takes the form:

〈 , 〉 t T

t 0 −5N
T −5N 0

(4.13)

The fact that 〈t, t〉 = 0 is the motivation for the complicated choice of t in (4.8).
In summary, if the Vir-submodule of P(0) generated by a state η representing

the top 0 in the socle filtration (4.6) indeed has properties 1.–4., then we have quasi-
primary states ω, Ω , t , T defined as in (4.8) and (4.9) with the properties (4.10)–
(4.13). We will return to this in the discussion of OPEs.

4.2 Computation of R(W(0))

An instance where we can compute the value of the adjoint functor R directly is the
one-dimensional W-module W(0). Namely, as we will explain in the second half
of this short subsection,

R
(
W(0)

)=W(0)�W(0). (4.14)

The object W(0) is transparent because it is a quotient of W and the tensor unit is
always transparent (recall that ⊗f is right exact and hence preserves surjections).
Furthermore, W(0)⊗f W(0) ∼=W(0) so that Lemma B.1 implies that W(0) is a
commutative associative algebra. Lemma 3.25 now tells us that the full centre is

Z
(
W(0)

)=W(0)�W(0). (4.15)

This result has an evident CFT interpretation. The algebra W(0) is a non-degenerate
boundary theory in the sense of Definition 2.14. In fact, W(0) is nothing but the
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chiral symmetry algebra of the c = 0 Virasoro minimal model. According to the
discussion in Sects. 2.5 and 3.5, Z(W(0)) is the largest bulk theory that can be
consistently and non-degenerately joined to the boundary theory W(0). It is then
not surprising that this bulk theory is the c = 0 Virasoro minimal model, i.e. the
trivial theory with one-dimensional state space.

The derivation of (4.14) is as follows. We first remark that the functor W(0)⊗f
(−) from C to C is monoidal (combine W(0)⊗f W(0)∼=W(0) with Lemma B.1).
The image of W(0)⊗f (−) lies in the full subcategory of C0 ⊂ C of objects isomor-
phic to direct sums of W(0) (thus C0 is a tensor-ideal). But C0 ∼= Vect as monoidal
categories via N �→ C(W(0),N). We shall need N �→ C(N,W(0)) instead, which
is a monoidal equivalence Copp

0
∼= Vect. Now

C
(
W(0)⊗f U,W(0)

)∼= C
(
W(0)⊗f U ⊗f W(0),W∗)

∼= C
(
U,W(0)

)
, (4.16)

so that the composition C
W(0)⊗f (−)−−−−−−−→ C0

∼−→ Vect is just C(−,W(0)). Since both
functors are monoidal, we conclude that C(−,W(0)) is a monoidal functor Copp →
Vect. Finally, for all U,V ∈ C we have

C
(
T (U � V ),W(0)

)= C
(
U ⊗f V,W(0)

)

(1)∼= C
(
U,W(0)

)⊗C C
(
V,W(0)

)

(2)∼= C2(U � V,W(0)�W(0)
)
, (4.17)

where (1) is monoidality of C(−,W(0)) and (2) is (3.4). By Lemma 3.8, this shows
that for all X ∈ C � Crev we have C(T (X),W(0))∼= C2(X,W(0)�W(0)). Thus by
definition of the adjoint, R(W(0))=W(0)�W(0).

4.3 Computation of R(W∗)

We now want to implement the general construction of Sect. 2.5 for more interesting
boundary theories than the W(0)-example treated in the previous subsection. That
is, we should fix an associative algebra A �=W(0) in C which has a non-degenerate
pairing and compute its full centre Z(A) ∈ C � Crev according to Definition 3.14.

A point to stress is that neither W nor W∗ are non-degenerate boundary theories
as in Definition 2.14. They are both associative (and commutative) algebras (cf.
Lemma B.1), but neither allows for a non-degenerate pairing. This is evident from
the socle filtration (4.5), as a necessary condition for a non-degenerate pairing on an
algebra A is that A∗ ∼=A (see Definition 3.2).
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According to Theorem 3.10 in [25], one way to produce such an algebra A ∈ C is
to take an object U ∈ C for which U∗ is the categorical dual and set A=U ⊗f U∗.
There are (recall the above disclaimer) many such objects to choose from. The
original idea was to choose A small in order to simplify the analysis, and one
convenient choice which produces a particularly small A is U = W( 5

8 ) (which
is self-contragredient). From Appendixes A.3 and A.4 in [25] we read off that
A=W( 5

8 )⊗f W( 5
8 ) has socle filtration

A :

2
"""

"
%%%

%

7
"""

"
0 7

%%%
%

2

(4.18)

The next step would be to use expression (3.43) and Theorem 3.24 to obtain Z(A)
as the subobject Cl(R(A)) of R(A)= ((A∗�W)⊗f R(W∗)∗)∗. Unfortunately, we
do not control the tensor product and braiding on C well enough to carry out this
computation.

Instead, let us have a closer look at W∗. As we already remarked, W∗ is not a
non-degenerate boundary theory, but it is still a (non-unital) associative algebra and
hence a boundary theory with background states as alluded to in Remark 2.15(ii).
The full centre Z(W∗) is a commutative associative algebra and provides a bulk
theory with background states as defined in Sect. 2.2. Indeed, it is by construction
the maximal such theory that can be non-degenerately joined to the boundary theory
W∗ (this follows from (2.33), Table 2 and Remark 3.15(i)). However, since Z(W∗)
is obtained from a ‘non-standard’ boundary theory, it is maybe not surprising that
it will show some ‘non-standard’ features itself; this will be discussed in Sect. 4.5
below.

The first step towards Z(W∗) is to determine R(W∗). The method for this given
in Sect. 3.6 has been carried out (recall the above disclaimer) in Sect. 2.2 in [26].
The result is as follows. As a W ⊗C W-representation, R(W∗) splits into 5 inde-
composable summands,

R
(
W∗)=H0 ⊕H1/8 ⊕H5/8 ⊕H1/3 ⊕H−1/24 ⊕H35/24, (4.19)

where we have labelled the individual blocks Hh by the conformal weight of the
lowest state. The blocks H−1/24 and H35/24 are irreducible and given by

H−1/24 =W
(−1

24

)
⊗C W

(−1

24

)
,

H35/24 =W
(

35

24

)
⊗C W

(
35

24

)
.

(4.20)

The remaining blocks are not irreducible. The socle filtration of H1/8 reads
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H1/8 :

W
(

1

8

)
⊗C W

(
1

8

)
⊕W

(
33

8

)
⊗C W

(
33

8

)

↓
2 ·W

(
1

8

)
⊗C W

(
33

8

)
⊕ 2 ·W

(
33

8

)
⊗C W

(
1

8

)

↓

W
(

1

8

)

⊗C W
(

1

8

)
⊕W

(
33

8

)
⊗C W

(
33

8

)
.

(4.21)

This can be organised in a more transparent fashion if we replace each direct sum
by a little table where we indicate the multiplicity of each term as in

1
8

33
8

1
8 1 0

33
8 0 1

−→

1
8

33
8

1
8 0 2

33
8 2 0

−→

1
8

33
8

1
8 1 0

33
8 0 1

(4.22)

The socle filtrations of H5/8 and H1/3 are the same, but with { 1
8 ,

33
8 } replaced by

{ 5
8 ,

21
8 } and { 1

3 ,
10
3 }, respectively. The sector H0 is the most interesting, its socle

filtration is (all empty entries are equal to ‘0’)

(4.23)

Via (3.30), R(W∗) inherits the structure of an associative algebra from W∗. To
find the full centre we should compute Z(W∗) = Cl(R(W∗)) ⊂ R(W∗). Again,
the lack of detailed knowledge of the braiding means we currently cannot do this.
However, we know from Remark 3.19 that exp(2πi(L0 − L0)) acts as the identity
on R(W∗). This implies that mR ◦ cR,R ◦ cR,R = mR (abbreviating R ≡ R(W∗)),
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i.e. taking one field all the way around another does not produce a monodromy. Our
guess is that in fact mR ◦ cR,R =mR , i.e. Z(W∗)=R(W∗), but as we already said,
we cannot check this.

Finally, recall that the functor R(−) is lax monoidal (cf. Sect. 3.6) and so the
algebra map W∗ →W(0) gives an algebra map π :R(W∗)→R(W(0)), which we
expect to be non-zero. As a consequence, there is an OPE-preserving surjection from
the tentative bulk theory Z(W∗) = R(W∗) to the c = 0 minimal model W(0) �
W(0). In this sense, R(W∗) is a ‘refinement’ of the minimal model.

4.4 Modular Invariance

A second interesting feature of this construction is that it leads to a modular invariant
partition function. It is a straightforward exercise to write down the vector space
of modular invariant bilinear combinations of the 13 characters of irreducible W-
representations. Namely, make the general ansatz

ξ(M, τ) :=
∑

a,b

MabχW(a)(q)χW(b)(q̄); q = e2πiτ , (4.24)

where M is a 13 × 13-matrix and a, b run over the lowest L0-weights of the 13
irreducibles. Then the condition ξ(M, τ + 1)= ξ(M, τ) already forces most entries
of M to be zero. The known modular properties of the characters (see [12], or Ap-
pendix A.2 in [26] for the notation used here) turn ξ(M,−1/τ)= ξ(M, τ) into a lin-
ear equation forM . In this way one finds that ξ(M, τ+1)= ξ(M, τ)= ξ(M,−1/τ)
has a two-dimensional space of solutions given by (zeros are not written)

M =

W(0) W(1) W(2) W(5) W(7) W( 1
3 ) W( 10

3 ) W( 5
8 ) W( 21

8 ) W( 1
8 ) W( 33

8 ) W(−1
24 ) W( 35

24 )

W(0) α 2β 2β 2β 2β

W(1) 2β 4β 4β 4β 4β

W(2) 2β 4β 4β 4β 4β

W(5) 2β 4β 4β 4β 4β

W(7) 2β 4β 4β 4β 4β

W( 1
3 ) 2β 2β

W( 10
3 ) 2β 2β

W( 5
8 ) 2β 2β

W( 21
8 ) 2β 2β

W( 1
8 ) 2β 2β

W( 33
8 ) 2β 2β

W(−1
24 ) β

W( 35
24 ) β

(4.25)
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with α,β ∈ C. Summing up the entries of the tables in (4.22) and (4.23) level by
level, one quickly checks that the above space of solutions is spanned by the charac-
ters of R(W(0)) and R(W∗). In particular, we see that the character χR(W∗)(q, q̄)
is modular invariant.

To relate the character χR(W∗)(q, q̄) to the partition function of R(W∗) we ap-
peal to Remark 2.8(iv) and Sect. 2.3: The composition series (4.22) and (4.23) sug-
gest that R(W∗)∼=R(W∗)∗, i.e. that R(W∗) is self-conjugate. Therefore, assuming
inversion invariance of R(W∗), the construction in Remark 2.8(iv) provides us with
non-degenerate two-point correlators on the Riemann sphere. According to Sect. 2.3
this allows one to express the torus amplitude as a trace over the space of states.

The partition function of R(W∗) follows a pattern also observed in supergroup
WZW models and the W1,p-models [24, 42], as well as in the study of modular
properties of Hopf algebra modules [19] (cf. Remark 3.26). Namely, despite the
complicated submodule structure ofR(W∗) as given in (4.23), in terms of characters
we simply have

χR(W∗)(q, q̄)=
∑

h

χW(h)(q)χP(h)(q̄), (4.26)

where the sum is over the weights of the 13 irreducibles.
In [41] it has been argued that this bilinear combination of characters is mod-

ular invariant for all Wp,q -models. Furthermore, it turns out that the function
χR(W∗)(q, q̄) can—up to a constant—be written as a linear combination of modular
invariant free boson partition functions at c= 1 [41]. In this form, χR(W∗)(q, q̄) has
already appeared in the context of a model for dilute polymers [47].18

4.5 Correlators and OPEs in R(W∗)

Finally, we want to explain the non-standard features of the putative bulk theory
R(W∗) in more detail. In particular, we want to show that it does not have an identity
field, nor a stress energy tensor. (However, the correlation functions are still invariant
under infinitesimal conformal transformations.)

In order to understand these features let us study the OPEs of the low-lying fields.
It follows from the socle filtration in (4.23) that there are three states of generalised
conformal dimension (0,0). These are mapped into one another under the action of
the zero modes. Denoting the relevant states again by η, ω and Ω , one would expect
(as is also assumed in (4.7)) that the relevant zero mode can be taken to be L0 or
L0. Since locality requires that L0 −L0 must be diagonalisable (cf. Remark 3.19),
we then conclude that

L0η= L0η= ω, L0ω= L0ω=Ω, L0Ω = L0Ω = 0. (4.27)

18More precisely, χR(W∗)(q, q̄) = Zc[ 3
2 ,1] + 3, where for Zc[ 3

2 ,1] we refer to Eq. (38) in [47]
and for the relation to polymers to Sect. 4.1.2 in [47]. We thank Hubert Saleur for a discussion on
this point.
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We can again define quasiprimary states t and T by (4.8), and likewise for t and T .
It follows from (4.23) that T is a holomorphic field since there is no primary field
of generalised dimension (2,1) in the third or fourth level of the socle filtration and
hence L−1T = 0. By the same argument we also see that Ω is annihilated by all Ln
and Ln modes. On the other hand, we cannot conclude that t is holomorphic, since
there is a (2,1) state in level 2 of the socle filtration (4.23); this is indeed expected
since the diagram (4.7) still applies, and hence t is the ‘logarithmic partner’ of T
(and thus should depend on both z and z̄).

4.5.1 Some OPEs

The derivation of the OPEs and correlators presented below can be found in Ap-
pendix C, here we merely list the results. The simplest set of OPEs are those involv-
ing Ω :

Ω(z)φ(w)= π(φ) ·Ω(w), for all φ ∈ F, (4.28)

and the OPE does not contain subleading terms. Here π is the intertwinerR(W∗)→
R(W(0))≡ C introduced in the previous subsection. The map π is an algebra ho-
momorphism, i.e. it is compatible with the OPE, and it is non-vanishing on the level
0 state η. We can normalise η such that π(η)= 1. In particular,

Ω(z)Ω(w)=Ω(z)ω(w)= 0, Ω(z)η(w)=Ω(w). (4.29)

Since Ω is the only sl(2,C)-invariant field in R(W∗), this shows that R(W∗) has
no identity field. Next we list some OPEs involving T :

T (z)ω(w)=O
(
(z−w)0), T (z)T (0)=O

(
(z−w)0),

T (z)η(w)=A ·
(

Ω(w)

(z−w)2 +
(∂/∂w)ω(w)

z−w
)
+O

(
(z−w)0),

t (z)T (w)= (A+ 1) ·
(−5Ω(w)

(z−w)4 +
2T (w)
(z−w)2 +

(∂/∂w)T (w)
z−w

)

+O
(
(z−w)0),

(4.30)

where A ∈ C is a so far undetermined constant. From this we see that T —the only
holomorphic field of weight (2,0) in the space of fields F—does not behave as
the stress tensor. For example, it has regular OPE with itself. However, a glance at
(4.11) shows that the OPE of the field t̂ = 1

A+1 t with T can be written as

t̂ (z)T (w)=
2∑

n=−1

(LnT )(w)
(z−w)−n−2

+O
(
(z−w)0). (4.31)

So in this OPE, t̂ behaves as the stress tensor (but it is not the stress tensor as it is
not holomorphic).
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Finally, we give two more OPEs for fields of generalised weight (0,0):

ω(z)ω(w)= B ·Ω(w)+ · · · ,
ω(z)η(w)= (

2(A−B) ln |z−w|2 +C) ·Ω(w)
+ (1−B + 2A) ·ω(w)+ · · · ,

(4.32)

where B,C ∈ C are new constants which remain to be determined. The dots stand
for terms which vanish for |z−w|→ 0 and which have no component of generalised
weight (0,0).

4.5.2 Some Correlators

Recall the intertwiner π : R(W∗)→ R(W(0))≡C from above. By our normalisa-
tion π(η)= 1 and by (2.22) we have

〈
η(z1) · · ·η(zn)

〉= 1. (4.33)

These are the correlators of the c= 0 minimal model. If a state from the kernel of π
is inserted, the correlator vanishes.

To obtain non-trivial correlators we have to allow background states as in
Sect. 2.2. For example, the normalisation condition η〈Ω(0)〉 = 1 and the OPE (4.28)
imply the correlators

η
〈
φ1(z1) · · ·φn(zn)Ω(w)

〉= π(φ1) · π(φ2) · · ·π(φn) (4.34)

for all φi ∈ F , independent of the insertion points zi and w. Another example is19

t
〈
T (0)

〉= T 〈
t (0)

〉=−5, (4.35)

which follows immediately from (4.13) together with η〈Ω(0)〉 = 1 which fixes
N = 1. Finally, from the OPEs (4.32) we can directly read off the two-point cor-
relators

ω
〈
ω(z)ω(w)

〉= 0, ω
〈
η(z)ω(w)

〉= 1−B + 2A,

η
〈
ω(z)ω(w)

〉= B, η
〈
η(z)ω(w)

〉= 2(A−B) ln |z−w|2 +C.
(4.36)

In summary, we have seen that R(W∗) does not have an identity field or a stress
tensor. Consequently, R(W∗) does not allow for an OPE-preserving embedding
W ⊗C W→ R(W∗) as one might have expected from a W ⊗C W-symmetric the-
ory. Nonetheless, by definition the n-point correlators are Vir ⊕ Vir-coinvariants

19The constant −5 found here is reminiscent of the b-value in the correlator of the stress tensor
and its logarithmic partner (but recall that T is not a stress tensor). The value b=−5 has recently
been observed in certain logarithmic bulk theories with c= 0 [51].
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(and also W ⊗C W-coinvariants). The above problems are closely related to the
fact that the boundary theory W∗ from which this construction starts only defines
a boundary theory with background states, see Remark 2.15(ii). If one were to
consider instead a usual non-degenerate boundary theory A with identity field as
in (4.18), one would expect that the corresponding full centre Z(A) is better be-
haved. In particular, the unit condition in Theorem 3.16 gives then a non-zero OPE-
preserving map W ⊗C W → Z(A) which we expect to be an embedding, so that
Z(A) would have an identity field and a stress tensor.
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Appendix A: Conditions B1–B5

In this appendix we write out conditions (B1)–(B5) referred to in Definition 2.11.
Let (F,M,Ω∗;B,m,ω∗;b) be as in that definition.

Below, we always take (x1, . . . , xm) ∈ R
m\diag, (z1, . . . , zn) ∈ H

n\diag and
ψi ∈ B , φj ∈ F . The integers m, n are to be chosen such that all Um,n in the state-
ment are defined (there has to be at least one field insertion; this field insertion can
be a boundary field or a bulk field, i.e. m,n ∈ Z≥0, m+ n > 0).

(B1) Um,n is smooth in each argument from R and H, and linear in each argument
from B and F .

(B2) Um,n is invariant under joint permutation20 of Rm and Bm and H
n and Fn.

Namely, for all σ ∈ Sm and τ ∈ Sn,

Um,n(x1, . . . , xm, z1, . . . , zn,ψ1, . . . ,ψm,φ1, . . . , φn)

=Um,n(xσ(1), . . . , xσ(m), zτ(1), . . . , zτ(n),
ψσ(1), . . . ,ψσ(m),φτ(1), . . . , φτ(n)). (A.1)

20Since there is a natural ordering of points on the boundary line R, instead of imposing invariance
under joint permutations one could require the sequence of points x1, . . . , xm to be strictly increas-
ing. We prefer the present formulation since it avoids awkwardness in other places. For example in
(B3c) below the parameter x would otherwise have to be placed according to the ordering. We also
note that the permutation symmetry has nothing to do with commutativity of boundary (or bulk)
fields. Indeed, there is no commutativity requirement on boundary fields, and the commutativity of
bulk fields is instead a consequence of single valuedness of the functions Cn in Sect. 2.1.
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Because there are three maps describing a short distance expansion in the defin-
ing data, namely M , m, b, there are three ways to link the Uk,l for different k, l.
These are listed in the next three conditions. We denote the canonical projection
F →⊕

d≤� F (d) by P� and the canonical projection B→⊕
d≤h B(d) by Ph.

(B3a) (Bulk OPE) Suppose that n ≥ 2 and that |z1 − z2| < |zi − z2| for all i > 2
and |z1 − z2|< |xj − z2| for all j . Then we can take the OPE of φ1(z1) and
φ2(z2), reducing the number of bulk fields by one:

Um,n(. . . , z1, z2, . . . , φ1, φ2, . . .)

= lim
�→∞Um,n−1

(
. . . , z2, . . . ,P� ◦Mz1−z2(φ1 ⊗ φ2), . . .

)
(A.2)

(B3b) (Boundary OPE) Suppose that m≥ 2 and that x1 > x2, and |x1− x2|< |xi −
x2| for all i > 2 and |x1 − x2| < |zj − x2| for all j . Then we can take the
OPE of ψ1(x1) and ψ2(x2), reducing the number of boundary fields by one:

Um,n(x1, x2, . . . ,ψ1,ψ2, . . .)

= lim
h→∞Um−1,n

(
x2, . . . ,Ph ◦mx1−x2(ψ1 ⊗ψ2), . . .

)
(A.3)

(B3c) (Bulk-boundary map) Suppose that n≥ 1. Write z1 = x+ iy. Suppose further
that |xi − x|> y for all i and |zj − x|> y for all j > 0. Then we can expand
φ1(z1) in terms of boundary fields at x, exchanging one bulk field for one
boundary field:

Um,n(x1, . . . , xm, z1, . . . , zn,ψ1, . . . ,ψm,φ1, . . . , φn)

= lim
h→∞Um+1,n−1

(
x, x1, . . . , xm, z2, . . . , zn,

Ph ◦ by(φ1),ψ1, . . . ,ψm,φ2, . . . , φn
)

(A.4)

The relation between derivatives and L−1 is as before,

(B4) The Um,n satisfy

d

dz1
Um,n(. . . , z1, . . . , φ1, . . .)=Um,n(. . . , z1, . . . ,L−1φ1, . . .),

d

dz̄1
Um,n(. . . , z1, . . . , φ1, . . .)=Um,n(. . . , z1, . . . ,L−1φ1, . . .),

d

dx1
Um,n(x1, . . . ,ψ1, . . .)=Um,n(x1, . . . ,L−1ψ1, . . .),

(A.5)

where d
dz1

and d
dz̄1

are complex derivatives, and d
dx1

is a real derivative.

Let f be a rational function on C ∪ {∞} which has poles at most in the set
{x1, . . . , xm, z1, . . . , zn, z̄1, . . . , z̄n} and∞, and which satisfies the growth condition
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limζ→∞ ζ−3f (ζ )= 0. The expansion around each of these points is

f (ζ )=
∞∑

p=−∞
f kp · (ζ − xk)p+1 =

∞∑

p=−∞
g+,kp · (ζ − zl)p+1

=
∞∑

p=−∞
g−,kp · (ζ − z̄l )p+1. (A.6)

(B5) For all f as above,

∞∑

p=−∞

{
m∑

k=1

f kpUm,n(. . . ,ψ1, . . . ,Lpψk, . . . ,ψm,φ1, . . . , φn)

+
n∑

l=1

Um,n
(
. . . ,ψ1, . . . ,ψm,φ1, . . . ,

(
g+,lp Lp + g−,lp Lp

)
φl, . . . , φn

)
}

= 0. (A.7)

As in (C5), only a finite number of summands in the sum over p are non-zero.
There is a corresponding condition with Lp and Lp exchanged in the sum
over bulk insertions.

The complicated looking set of conditions (B5) is obtained following the original
argument in [4]: The fact that the boundary condition preserves conformal symmetry
means that the correlator on the UHP satisfies the same conditions as the ‘holomor-
phic part’ of a bulk correlator with insertions at {x1, . . . , xm, z1, . . . , zn, z̄1, . . . , z̄n}.
In other words, an insertion at z in the upper half plane is duplicated to an insertion
at z and z̄. This prescription arises again from contour integration, as noted in the
following remark.

Remark A.1 As in Remark 2.2, one can replace (B5) by the stronger requirement
that there should exist a stress tensor, that is, a field T bnd ∈ B(2) such that mx(T ⊗
ψ) =∑∞

m=−∞ x−m−2Lmψ . The CFT on the complex plane (F,M,Ω∗) is then
equally required to be equipped with a stress tensor T ,T ∈ F (2). The statement ‘the
boundary condition respects conformal symmetry’ means that the two components
of the stress tensor in the bulk agree with the stress tensor on the boundary in the
sense that

lim
y→0

〈
T (x + iy) · · · 〉= 〈

T bnd(x) · · · 〉= lim
y→0

〈
T (x + iy) · · · 〉 (A.8)

holds in all correlators. Define the meromorphic function u(ζ ) on the complex plane
as follows:

u(ζ )=
{
〈T (ζ )ψ1(x1) · · ·φ1(z1) · · · 〉; Im(ζ )≥ 0

〈T (ζ̄ )ψ1(x1) · · ·φ1(z1) · · · 〉; Im(ζ ) < 0
(A.9)
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The conditions (A.7) arise from the contour integral 1
2πi

∮
f (ζ )u(ζ )dζ = 0, where

the contour is a big circle enclosing {x1, . . . , xm, z1, . . . , zn, z̄1, . . . , z̄n}. Then the
contour is deformed to a union of small circles around each of the xi , zi , z̄i and the
OPEs of the stress tensor are substituted.

Appendix B: Further Details on the Algebraic Reformulation

B.1 Proof of Theorem 3.5

Proof of Theorem 3.5 If A∼= Repf.d.(A), condition (PF) follows by taking P =A,
seen as a right module over itself. For the converse, pick a projective generator P .
We can choose A := A(P,P ) and define the functor H : A→ Repf.g.(A) on ob-
jects and morphisms by

U �→A(P,U), [U f−→ V ] �→ [P (−)−−→U
f−→ V ]. (B.1)

The right action of a ∈A is given by f �→ f ◦ a. Note that H(P )=A. The functor
H is

• faithful: there exists a surjection P⊕m→U for somem, and so, given g :U→ V ,

if [P s−→U
g−→ V ] = 0 for all s, then also g = 0.

• full: We need to show that every linear map ϕ : A(P,U)→ A(P,V ) such that
ϕ(f ) ◦ a = ϕ(f ◦ a) for all a ∈ A, is of the form ϕ(f ) = ψ ◦ f for some

ψ :U→ V . Let P⊕k K−→ P⊕m s−→ U the first two steps of a projective resolu-
tion (thus s is surjective and the image of K is the kernel of s). Let s1, . . . , sm be
the restriction of s to each summand. The pullback property along surjections,

P

∃a
��&

&
&

&
f

��
P⊕m

s


 U

(B.2)

shows that all f can be written as
∑

i si ◦ ai for some ai ∈ A. Thus s1, . . . , sm
generates A(P,U) as an A-module. Next, consider the cokernel diagram

P⊕k
K



 P⊕m
s





∑
i ϕ(si )

��

U

∃!ψ��&
&

&
&

&

V

(B.3)

The cokernel property can be applied because, denoting by Kij : P → P the
components of K ,

∑
i ϕ(si) ◦Kij =∑

i ϕ(si ◦Kij ) = 0 as
∑

i si ◦Kij = 0 for
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all j . The diagram then shows that ϕ(si)=ψ ◦ si for some ψ :U→ V . Since the
si generate A(P,U), this fixes ϕ uniquely.

• essentially surjective: Let M be a finite-dimensional A-module. Let A⊕k →
A⊕m → M be the first two steps of a projective (in fact: free) resolution. In

other words, A(P,P⊕k) ϕ−→A(P,P⊕m)→M→ 0 is exact for some A-module
map ϕ. By fullness, there is a ψ : P⊕k→ P⊕m such that ϕ = ψ ◦ (−). Since P

is projective, the functor A(P,−) is exact, and so the exact sequence P⊕k ψ−→
P⊕m cok(ψ)−−−−→ U → 0 gets mapped to the exact sequence A(P,P⊕k) ψ◦(−)−−−→
A(P,P⊕m)→A(P,U)→ 0. Thus M ∼=A(P,U) for some U . �

B.2 Idempotent Absolutely Simple Objects Are Algebras

Lemma B.1 Let M be a k-linear monoidal category and let S ∈M be such that
S ⊗ S ∼= S and C(S,S)= k · idS . Pick an isomorphism m : S ⊗ S→ S.

(i) The associator αS,S,S : S ⊗ (S ⊗ S)→ (S ⊗ S)⊗ S is αS,S,S = (m−1 ⊗ idS) ◦
(idS ⊗m).

(ii) If M is in addition braided, the braiding on S is cS,S = idS⊗S .
(iii) The pair (S,m) is an associative algebra in M. If M is braided, this algebra

is commutative.
(iv) If n : S ⊗ S→ S is an isomorphism, then (S,m) and (S,n) are isomorphic as

algebras.

Proof We will omit ‘⊗’ between objects for better readability.

(i) The space M(S(SS), (SS)S) is isomorphic to M(S,S) and hence one-
dimensional. Therefore, there has to exist a λ ∈ k× such that

αS,S,S = λ ·
[
S(SS)

idS⊗m−−−−→ SS
m−1⊗idS−−−−−→ (SS)S

]
. (B.4)

Naturality of the associator implies

[
U(VW)

f⊗(g⊗h)−−−−−→ S(SS)
αS,S,S−−−→ (SS)S

]

= [
U(VW)

αU,V,W−−−−→ (UV )W
(f⊗g)⊗h−−−−−→ (SS)S

]
(B.5)

Applying this to f =m, g = h= idS , etc., allows one to solve for α with one
entry being SS. The result is

αSS,S,S = λ ·
(
m−1 ⊗ idS ⊗m

)= αS,S,SS,
αS,SS,S = λ ·

{(
idS ⊗m−1) ◦m−1}⊗ {

m ◦ (m⊗ idS)
}
.

(B.6)

The pentagon with all four objects set to S reads

αSS,S,S ◦ αS,S,SS = (αS,S,S ⊗ idS) ◦ αS,SS,S ◦ (idS ⊗ αS,S,S). (B.7)
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Substituting the expressions in terms of λ and m one quickly checks that the
above identity simplifies to λ2 · u = λ3 · u, with u = {(m−1 ⊗ idS) ◦m−1} ⊗
{m ◦ (idS ⊗m)} �= 0. Thus, λ= 1.

(ii) By assumption M(SS,SS) is one-dimensional, and hence there has to be an
ω ∈ k× such that cS,S = ω · idSS . By naturality,

[UV f⊗g−−→ SS
cS,S−−→ SS] = [UV cU,V−−→ VU

g⊗f−−→ SS], (B.8)

and applying this to f =m and g = idS we can solve for cSS,S . The result is
cSS,S = ω · (m−1⊗ idS) ◦ (idS ⊗m). One of the two hexagons with all objects
set to S reads

αS,S,S ◦ cSS,S ◦ αS,S,S = (cS,S ⊗ idS) ◦ αS,S,S ◦ (idS ⊗ cS,S) (B.9)

Substituting the expressions for αS,S,S from (i) and cS,S , cSS,S as above, this
reduces to ω · v = ω2 · v with v = (m−1 ⊗ idS) ◦ (idS ⊗m). Thus ω= 1.

(iii) Associativity is m ◦ (idS ⊗m) = m ◦ (m⊗ idS) ◦ αS,S,S , which holds by (i),
and commutativity is trivial as cS,S = idSS by (ii).

(iv) Since M(SS,S) is one-dimensional, we have n= λm for some λ ∈ k×. Take
f = λidS . Then f ◦ n=m ◦ (f ⊗ f ). �

B.3 Proof of Theorem 3.16

Proof of Theorem 3.16 Existence: Consider the composition (the left path in (3.35))

w := [
T (Z⊗C2 Z)

T −1
2;Z,Z−−−→ T (Z)⊗C T (Z)

z⊗Cz−−−→A⊗C A
μA−→A

]
. (B.10)

We need to check that the pair (Z⊗C2 Z,w) satisfies condition (3.31), i.e. that it is
an object in Cfull center(A). This amounts to commutativity of (brackets, associators
and ‘⊗C ’ are not written)

T (Z⊗C2 Z)A

ϕZ⊗Z,A

��

T−1
2 ⊗idA



 T (Z)T (Z)A
z⊗z⊗idA





idT (Z)⊗ϕZ,A
��

AAA

μA⊗idA


 AA

μA

��'
''

''
''

''

T (Z)AT (Z)

ϕZ,A⊗idT (Z)

��

A

AT (Z⊗C2 Z)

idA⊗T−1
2



 AT (Z)T (Z)
idA⊗z⊗z



 AAA
idA⊗μA



 AA

μA

��((((((((

(B.11)
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The left subdiagram is just (3.20), while the details for the right subdiagram are
obtained by copying out the corresponding diagram in the proof of Proposition 4.1
in [7] in the present setting; we omit the details.

By the universal property of (Z, z), there exists a unique morphismZ⊗C2Z→ Z

such that (3.32) commutes. We define this morphism to be μZ .
Commutativity: We will show below that cZ,Z is an arrow from (Z ⊗C2 Z,w)

to itself in Cfull center(A). This provides us with two arrows from (Z ⊗C2 Z,w) to
(Z, z) in Cfull center(A), namely μZ and μZ ◦ cZ,Z . By uniqueness, they have to be
equal, establishing commutativity.

That cZ,Z is an endomorphism of (Z⊗C2 Z,w) amounts to commutativity of the
diagram

T (Z⊗C2 Z)

T (cZ,Z)

��

T−1
2



 T (Z)⊗C T (Z)
idT (Z)⊗z





ϕ̂Z,Z=ϕZ,T (Z)
��

T (Z)⊗C A
z⊗idA





ϕZ,A

��

A⊗A
μA

��)))))

A

T (Z⊗C2 Z)

T−1
2



 T (Z)⊗C T (Z)
z⊗idT (Z)



 A⊗C T (Z)
idA⊗z



 A⊗A μA

�������

(B.12)

Starting from the left, the first square commutes by definition (3.21) of ϕ̂Z,Z . By
Lemma 3.10, this is equal to ϕZ,T (Z). The second square is then just naturality of
ϕZ,T (Z). The third square is property (3.31) for z.

Associativity: In the proof of associativity, we will not write out tensor product
symbols and brackets between objects, and we omit all associators. We will show
the equality of the two maps a = μZ ◦ (μZ ⊗ idZ) and b = μZ ◦ (idZ ⊗ μZ) from
ZZZ to Z via the terminal object property. Define the map

y := [
T (ZZZ)

∼−→ T (Z)T (Z)T (Z)
z⊗z⊗z−−−−→AAA

mult.−−→A
]
, (B.13)

where the first isomorphism is constructed from T2 and associators, and ‘mult.’
stands for any order of multiplying the three factors via μA. That y ∈ Cent(ZZZ,A)
is checked by an analogous argument as that giving commutativity of (B.11). We
now need to verify that a and b are maps from (ZZZ,y) to (Z, z). This will imply
a = b and hence associativity of μZ . That T (a) : T (ZZZ)→ T (Z) makes (3.31)
commute amounts to commutativity of

T (ZZZ)
T (μZ⊗idZ)





∼
��

T (ZZ)
T (μZ)





∼
��

T (Z)

T (Z)T (Z)T (Z)
μTZ⊗idT Z





z⊗z⊗z
��

T (Z)T (Z)
μTZ





z⊗z
��

T (Z)

z

��
AAA

μA⊗idA


 AA

μA


 A

(B.14)
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The top two squares commute by definition ofμTZ in (3.30), the bottom two squares
commute because z is an algebra map (since it satisfies (3.35)). The argument for
T (b) is similar.

Unitality: The construction of the unit for Z rests on the observation that

ϕ1,U =
[
T (1)U

T −1
0 ⊗idU−−−−−→ 1U

λU−→U
ρ−1
U−−→U1

idU⊗T0−−−−→UT (1)
]
, (B.15)

which can be checked directly from (3.17). Define the map

u := [
T (1)

T −1
0−−→ 1

ιA−→A
]
. (B.16)

To see that u ∈ Cent(1,A), we need to establish commutativity of

T (1)A
T −1

0 ⊗idA




ϕ1,A

��

1A
ιA⊗idA





λA ���������
AA

μA��
A

AT (1)
idA⊗T −1

0



 A1
idA⊗ιA





ρA
  *******
AA

μA

��
(B.17)

The pentagon is (B.15) and the remaining triangles amount to the unit property of ιA.
Thus there exists a unique ιZ : 1→ Z such that u= z ◦ T (ιZ). The unit property of
ιZ follows by verifying that μ ◦ (idZ ⊗ ιZ) ◦ ρ−1

Z , μ ◦ (ιZ ⊗ idZ) ◦ λ−1
Z and idZ are

morphisms Z→ Z in the category Cfull center(A) and hence are all equal. We refer
to Proposition 4.1 in [7] for details. �

B.4 Proofs for Theorems 3.17 and 3.18

The proof of Theorem 3.17 requires three lemmas. The first one gives an alternative
characterisation of a representing object.

Lemma B.2 LetU ∈ C, R′ ∈ C�Crev and r ′ : T (R′)→U . The following are equiv-
alent:

(i) The object R′ represents the functor C(T (−),U) such that the natural isomor-
phism C(T (−),U)→ C2(−,R′) maps r ′ to idR′ .

(ii) The pair (R′, r ′) satisfies the following universal property: For all pairs (X,x)
with X ∈ C � Crev and x : T (X)→U , there exists a unique morphism x̃ :X→
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R′ such that the diagram

T (X)
T (x̃)





x ����
��

T (R′)

r ′��++++

U

(B.18)

commutes.

Proof (i) ⇒ (ii): Denote the natural isomorphism by χ− : C(T (−),U)→ C2(−,
R′). Naturality amounts to the following two equivalent identities, for all f :X→
Y , y : T (Y )→U , and for b= χY (y),

χX
(
y ◦ T (f ))= χY (y) ◦ f, χ−1

Y (b) ◦ T (f )= χ−1
X (b ◦ f ). (B.19)

Suppose we are given (X,x). We need to show existence and uniqueness of x̃.
Existence: Choose x̃ = χX(x). Commutativity of (B.18) follows since r ′ ◦

T (x̃)= χ−1
R′ (idR′) ◦ T (χX(x))= χ−1

X (idR′ ◦ χX(x))= x.
Uniqueness: Suppose (B.18) holds for some a : X→ R′ in place of x̃, i.e. r ′ ◦

T (a)= x. By naturality, r ′ ◦T (a)= χ−1
R′ (idR′)◦T (a)= χ−1

X (a). Thus χ−1
X (a)= x,

which is equivalent to a = χX(x).
(ii) ⇒ (i): Given x : T (X) → U , we define the map χX : C(T (X),U) →

C2(X,R′) to be χX(x) = x̃. By uniqueness of x̃, this is well-defined. Since for
(X,x) = (R′, r ′) we can choose x̃ = idR′ , the collection of maps χ− satisfies
χR′(r ′)= idR′ , as required. It remains to see that χX is a bijection for each X and
that it is natural in X.

Naturality: We will check the first identity in (B.19). By uniqueness of x̃ in (B.18)
it is enough to check that also χY (y) ◦ f provides an arrow from (X,y ◦ T (f )) to
(R′, r ′), i.e. that the diagram

T (X)

T (f )
��,,,,

T (f )


 T (Y )

T (χY (y))




***
*

***
*

T (R′)

r ′
���������������

T (Y )

y ��,,,,,

U

(B.20)

commutes, which it does by definition of χY .
Surjectivity: Given a :X→R′, by naturality and χR′(r ′)= idR′ one has χX(r ′ ◦

T (a))= χX(r ′) ◦ a = a.
Injectivity: Suppose χX(x)= 0. Then by definition also x = r ′ ◦ T (0)= 0. �

The second lemma allows one to rewrite any pairing in terms of the canonical
non-degenerate pairings defined in (3.1).
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Lemma B.3 Let p :U ⊗ V → 1∗.
(i) There exist unique maps f : U → V ∗ and g : V → U∗ such that p = βU ◦

(idU ⊗ g) and p = βV ∗ ◦ (f ⊗ δV ).
(ii) For all h :U→ V we have βV ◦ (h⊗ idV ∗)= βU ◦ (idU ⊗ h∗).

Proof Both parts follow from naturality of δ and π in condition (C). The latter
amounts to the statement that for all a :X→U , b : Y → V and q :U→ V ∗,

πX,V (q ◦ a)= πU,V (q) ◦ (a⊗ idV ),

πU,Y
(
b∗ ◦ q)= πU,V (q) ◦ (idU ⊗ b).

(B.21)

For part (ii) we compute πV,V ∗(δV ) ◦ (h⊗ idV ∗) = πU,V ∗(δV ◦ h) = πU,V ∗(h∗∗ ◦
δU )= πU,U∗(δU ) ◦ (idU ⊗h∗). For part (i) set f = π−1

U,V (p) and g = f ∗ ◦ δV . Then

βU ◦ (idU ⊗ g)= πU,U∗(δU ) ◦
(
idU ⊗

(
f ∗ ◦ δV

)) (1)= πU,V
((
f ∗ ◦ δV

)∗ ◦ δU
)

= πU,V
(
(δV )

∗ ◦ f ∗∗ ◦ δU
) (2)= πU,V

(
(δV )

∗ ◦ δV ∗ ◦ f
)

(3)= πU,V (f )= p, (B.22)

where (1) is naturality of π , (2) is naturality of δ and (3) is (δV )∗ = (δV ∗)−1, which
is required by condition (C). The identity βV ∗ ◦ (f ⊗ δV )= p is checked along the
same lines (use naturality to move f and δ inside π ). Uniqueness of f and g is
implied by non-degeneracy of βU and βV ∗ , see the text below Definition 3.2. �

For the third lemma, recall the space N , the basis {u1, . . . , u|N |} of N and the
map n=∑

i ui ◦ πi defined in Sect. 3.6.

Lemma B.4 For any f : (P � P)⊕m→ P � P ∗ such that βP ◦ T (f ) = 0, there
exists a (typically non-unique) ϕ : (P � P)⊕m→ (P � P)⊕|N | such that

(P � P)⊕m

∃ϕ ��)
)

)
)

)

f


 P � P ∗

(P � P)⊕|N |
n

��----------

(B.23)

commutes.

Proof Denote by

(P � P)⊕m
pi




P � P

ei

�� , (P � P)⊕|N |
πi




P � P

ιi

�� (B.24)
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the embedding and projection maps of the two direct sums. Let fj = f ◦ ej . By

assumption, fj ∈N . Thus we can write fj =∑|N |
i=1Aijui for some Aij ∈ k. Define

ϕ =
|N |∑

i=1

m∑

j=1

Aij · ιi ◦ pj : (P � P)⊕m→ (P � P)⊕|N |. (B.25)

Then indeed n ◦ ϕ = ∑
i,j,k Aijuk ◦ πk ◦ ιi ◦ pj =

∑
i,j Aijui ◦ pj =

∑
j fj ◦

pj = f . �

Proof of Theorem 3.17 We will show that R′ satisfies condition (ii) in Lemma B.2
(with U = 1∗). Namely, suppose we are given a pair (X,x) with X ∈ C � Crev and
x : T (X)→ 1∗. We need to show that there exists a unique x̃ : X→ R′ such that
x = r ′ ◦ T (x̃).
• Existence: Let

(P � P)⊕k K−→ (P � P)⊕m cok(K)−−−−→X (B.26)

be the first two steps of a projective resolution of X. That is, we have a surjection
s : (P �P)⊕m→X whose kernel is the image of K : (P �P)⊕k→ (P �P)⊕m
(and hence s = cok(K)). Define

p = [
T

(
(P � P)⊕m

) T (cok(K))−−−−−−→ TX
x−→ 1∗

]
. (B.27)

Let πi : (P �P)⊕m→ P �P be the projection to the ith summand. Then T (πi) :
T ((P � P)⊕m)→ P ⊗C P and if we can define pi via

p =
∑

i

[
T

(
(P � P)⊕m

) T (πi)−−−→ P ⊗C P
pi−→ 1∗

]
. (B.28)

By Lemma B.3(i), there exists a qi : P → P ∗ such that pi = [P ⊗C P
id⊗qi−−−→

P ⊗C P ∗
βP−→ 1∗]. Define p̃ :=∑

i (idP � qi) ◦ πi . Then

T ((P � P)⊕m)
T (p̃)





T (cok(K))
��

p

��)))))))))))))
P � P ∗

βP

��
TX

x


 1∗

(B.29)

commutes by construction. It follows that βP ◦ T (p̃ ◦ K) = x ◦ T (cok(K) ◦
K) = 0. From Lemma B.4 we get a map u such that subdiagram (1) in the fol-
lowing diagram commutes:
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(P � P)⊕k
K





u

��
(1)

(P � P)⊕m

p̃

��

cok(K)




(2)

X

∃!x̃
���
�
�

(P � P)⊕|N |
n



 P � P ∗
cok(n)



 R′

(B.30)

The existence of u implies that cok(n) ◦ p̃ ◦K = 0, so that by the universal prop-
erty of cok(K) there exists a unique x̃ : X→ R′ such that subdiagram (2) com-
mutes. This is the x̃ we are looking for. It remains to show that x = r ′ ◦ T (x̃).
Since cok(K) is a surjection and since T is right exact, also T (cok(K)) is a sur-
jection, and it is sufficient to verify x ◦ T (cok(K))= r ′ ◦ T (x̃) ◦ T (cok(K)), i.e.
commutativity of

T ((P � P)⊕m)
T (cok(K))





T (cok(K))

��

T (p̃)

�������������
T (X)

T (x̃)


 T (R′)

r ′

��

T (P � P ∗)
T (cok(n))

!!����������

βP

�������������

T (X)
x



 1∗

(B.31)

Commutativity of the top square is T applied to square (2) in (B.30); the right
triangle is the definition of r ′ in (3.40); finally, the bottom left square is (B.29).

• Uniqueness: We will show that if a map f :X→R′ satisfies r ′ ◦ T (f )= 0, then
f = 0. This implies that the x̃ constructed above is unique. Write g = f ◦cok(K).
It is enough to show that g = 0. Consider the diagram

(P � P)⊕m
g





∃v
���
�
� ∃h

���
�

�
�

�
R′

(P � P)⊕|N |
n



 P � P ∗

cok(n)

��
(B.32)

Since (P � P)⊕m is projective, we can pull back g along the surjection cok(n),
giving us the existence of h. By (3.40) we have βP = r ′ ◦ T (cok(n)), so that
βP ◦ T (h)= r ′ ◦ T (cok(n)) ◦ T (h)= r ′ ◦ T (g)= r ′ ◦ T (f ) ◦ T (cok(K))= 0 by
assumption on f . Hence we can apply Lemma B.4 to obtain the map v in (B.32).
Altogether, g = cok(n) ◦ n ◦ v = 0. �

Remark B.5 Because of the finiteness assumption (PF), there is a finite number of
isomorphism classes of simple objects in C. Let {Ui |i ∈ I} be a choice of represen-
tatives. Furthermore, each Ui has a projective cover Pi . For the projective generator,
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we can choose P =⊕
i∈I Pi , so that R′ arises as a quotient of P �P ∗. In fact, one

can choose a ‘smaller’ starting point, namely

Q :=
⊕

i∈I
Pi � P ∗i (B.33)

(but then the above proof would have involved more indices). To describe the map
whose cokernel to take, define the subspace

M =
{
f : P � P →Q

∣∣∣
∑

i∈I
βPi ◦ f = 0

}
⊂ C2(P � P,Q). (B.34)

Denote by ιi : Pi → P and πi : P → Pi the embedding and restriction map of
the direct sum. Pick a basis {vj } of M and define m : (P � P)⊕|M| →Q as m =
∑|M|

l=1 vl ◦ pl , with pl the lth projection (P � P)⊕|M| → P � P . Set R′′ = cok(m).
Then in fact

R′ ∼=R′′, (B.35)

with R′ defined as in (3.39). To see this, define π : P � P ∗ →Q, π =⊕
i∈I πi �

ι∗i and ι : Q→ P � P ∗, ι =⊕
i∈I ιi � π∗i . These maps make the two diagrams

contained in

P ⊗C P ∗

T (π)

��

βP

""!!!!!!!!!!

1∗

⊕
i∈I Pi ⊗C P ∗i

T (ι)

��

∑
i∈I βPi

##










(B.36)

commute. For example, βP =∑
i∈I βP ◦ (ιi ⊗C idP ∗) ◦ (πi ⊗C idP ∗)=∑

i∈I βPi ◦
(πi ⊗C ι∗i )=

∑
i∈I βPi ◦ T (π). We can now construct maps between the two coker-

nels using their universal properties. Consider the diagram

(P � P)⊕|N |
n



 P � P ∗
cok(n)





π

��

R′

∃!
���
�
�

(P � P)⊕|M|
m



 Q
cok(m)





ι

��

R′′

∃!
���
�
�

(B.37)

The diagram (B.36) tells us that (
∑

i∈I βPi ) ◦ T (π ◦ n)= βP ◦ T (n)= 0. Thus the
image of π ◦ n lies in the image of m (by an argument analogous to the one in
Lemma B.4), so that cok(m) ◦π ◦n= 0. The universal property gives a unique map
R′ → R′′. Similarly one checks that cok(n) ◦ ι ◦m = 0, giving the map R′′ → R′.
By uniqueness, these are inverse to each other.
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The next lemma prepares the proof of Theorem 3.18.

Lemma B.6 For all u ∈ C(P,P ) we have cok(n) ◦ (u� id− id � u∗)= 0.

Proof Pick an m ∈ Z>0 such that there is a surjection s : (P � P)⊕m→ P � P ∗.
Let f = (u� id− id � u∗) ◦ s. Then the statement cok(n) ◦ (u� id− id � u∗)= 0
is equivalent to cok(n) ◦f = 0. We will show the latter. By Lemma B.3(ii), we have

[
T

(
(P � P)⊕m

) T (s)−−→ P ⊗ P ∗ u⊗id−id⊗u∗−−−−−−−→ P ⊗ P ∗ βP−→ 1∗
]= 0. (B.38)

We can thus apply Lemma B.4 and obtain a map f̃ : (P � P)⊕m→ (P � P)⊕|N |
such that f = n ◦ f̃ . Hence cok(n) ◦ f = cok(n) ◦ n ◦ f̃ = 0. �

Proof of Theorem 3.18 Since ν � id − id � ν̃ is a natural transformation of the
identity functor on C � Crev, the diagram

P � P ∗
cok(n)





(ν�id−id�ν̃)P�P∗
��

R′

(ν�id−id�ν̃)R′
��

P � P ∗
cok(n)



 R′

(B.39)

commutes. Now note that for all U ∈ C,

ν̃U∗ = (δU∗)−1 ◦ (νU∗∗)∗ ◦ δU∗ = (δU )∗ ◦ (νU∗∗)∗ ◦
(
δ−1
U

)∗ = (νU )∗. (B.40)

Thus (ν� id− id � ν̃)P�P ∗ = νP � id− id � (νP )
∗. By Lemma B.6, the lower path

in the above diagram is zero. Since cok(n) is surjective, this implies (ν � id− id �
ν̃)R′ = 0. �

B.5 Adjoint to the Tensor Product

We first need to establish the compatibility of condition (C) and the Deligne product.
We do this under the assumption that we are given two categories C, D which satisfy
condition (PF) from Sect. 3.2 (rather than (F) for we need to invoke Proposition 5.5
in [9]), which are monoidal with k-linear right exact tensor product, and both have
conjugates according to condition (C).

Since (−)∗ is an equivalence, it is exact. Thus Copp×Dopp (−)∗×(−)∗−−−−−−→ C×D �−→
C�D factors through a functor Copp �Dopp → C�D. By Proposition 5.5 in [9], we
may take Copp �Dopp = (C �D)opp. Altogether, we get a contragredient involutive
functor on C � D, which we also denote by (−)∗. By definition, on ‘factorised
objects’ it satisfies

(C �D)∗ = C∗ �D∗. (B.41)
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Lemma B.7 (−)∗ : C �D→ C �D satisfies property (C).

Proof The natural isomorphisms δC and δD between the exact functors � and � ◦
{(−)∗∗ × (−)∗∗} from C ×D to C �D provide a natural isomorphism δ from Id to
(−)∗∗ on C �D with the required property (δX)∗ = (δX∗)−1.

For the existence of π , we stress again (Proposition 5.5 in [9]): Copp � Dopp =
(C�D)opp. Thus there is an equivalence of functor categories between k-linear right
exact functors in each argument Copp ×Dopp → Eopp and right exact functors (C �
D)opp → Eopp. But this is the same as saying that there is an equivalence of functor
categories between k-linear functors C ×D→ E , left exact in each argument, and
left exact functors C�D→ E . Given our assumptions on C and D, by Corollary 5.4
in [9], the functor � : C ×D→ C �D itself is exact in each argument.

Recall that an abelian category A, the Hom-functor from Aopp ×A to abelian
groups given by (A,B) �→A(A,B) is left exact in each argument. Thus the func-
tor Copp × Copp → Vect given by (U,V ) �→ C(U,V ∗) is left exact in each argu-
ment. The maps πU,V provide a natural isomorphism from this functor to the func-
tor (U,V ) �→ C(U ⊗ V,1∗), which therefore is also left exact in both arguments
(even though it involves the right exact tensor product). The same reasoning applies
to D. The combined functors

Copp ×Dopp × Copp ×Dopp → Vect,

(U,A,V,B) �→ C(U,V ∗)⊗k D(A,B∗) and (B.42)

(U,A,V,B) �→ C(U ⊗ V,1∗)⊗k D(A⊗B,1∗),

are equally left exact in each argument, and thus give two functors (C � D)opp ×
(C �D)opp → (C �D � C �D)opp → Vect which are left exact in each argument.
In view of (3.4), these functors are necessarily given by

(X,Y ) �→ C �D
(
X,Y ∗

)
and (X,Y ) �→ C �D

(
X⊗ Y,1∗ � 1∗

)
. (B.43)

The equivalence (3.2) of functor categories—which as we saw above also holds
for the corresponding categories of left exact functors—now shows that the natural
isomorphism πC

U,V ⊗k πD
A,B between the functors (B.42) provides a natural isomor-

phism πX,Y between the functors (B.43). �

Recall the definition of the functor R in terms of the conjugates on C and C�Crev

given in (3.43).

Proof of Theorem 3.20 The natural isomorphisms

ξX,U : C
(
T (X),U

) ∼−→C2(X,R(U)
)

(B.44)

are provided by the composition
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C
(
T (X),W

) ∼−−−−→
π and δ

C
(
T (X)⊗C W

∗,1∗
)

∼−→ C
(
T (X)⊗C T

(
W ∗ � 1

)
,1∗

)

∼−→
T2

C
(
T

(
X⊗C2

(
W ∗ � 1

))
,1∗

)

∼−−−−−−−→
χ from (3.37)

C2(X⊗C2

(
W ∗ � 1

)
,R1∗

)

∼−−−−−−→
Lemma B.7

C2([X⊗C2

(
W ∗ � 1

)]⊗C2 (R1∗)
∗,1∗ � 1∗

)

∼−−−→
assoc

C2(X⊗C2

[(
W ∗ � 1

)⊗C2 (R1∗)
∗],1∗ � 1∗

)

∼−−−−−−→
Lemma B.7

C2(X,
[(
W ∗ � 1

)⊗C2 (R1∗)
∗]∗)

≡ C2(X,R(W)
)
. (B.45)

�

The adjunction natural transformations are, in terms of the isomorphism (B.44),

ηX := ξX,T (X)(idT (X)) :X→R
(
T (X)

)
,

εU := ξ−1
R(U),U (idR(U)) : T

(
R(U)

)→U,
(B.46)

and the satisfy the adjunction properties, for X ∈ C � Crev and U ∈ C,

[
R(U)

ηR(U)−−−→RTR(U)
R(εU )−−−→R(U)

]= idR(U),

[
T (X)

T (ηX)−−−→ T RT (X)
εT (X)−−−→ T (X)

]= idT (X).

(B.47)

The functor R is lax monoidal (and colax monoidal), with R0 and R2 given by

R0 =
[
1 � 1

η1�1−−→R
(
T (1 � 1)

) R(T −1
0 )−−−−→R(1)

]
,

R2;U,V =
[
RU ⊗C2 RV

ηRU⊗RV−−−−−→R
(
T (RU ⊗C2 RV )

)

T −1
2;RU,RV−−−−−→R

(
T R(U)⊗C T R(V )

) R(εU⊗εV )−−−−−−→R(U ⊗C V )
]
,

(B.48)

see, e.g., Definition 2.1 and Lemma 2.7 in [34].

B.6 More Details on Centres

This appendix contains an auxiliary result which implies the existence of the left
centre in abelian monoidal categories which have conjugates as in (C), and it con-
tains the proof of Theorem 3.24.
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Let A be an abelian monoidal category with conjugates according to condition
(C). Let m : A ⊗ B → C be a morphism in A. Consider the category Q whose
objects are pairs (U,u) where u :U→A is such thatm◦ (u⊗ idB)= 0. Morphisms
f : (U,u)→ (V , v) in Q are maps f :U→ V in A such that v ◦ f = u.

Using conjugates, from m we obtain a morphism m̃ :A→ (B ⊗C∗)∗ via

A(AB,C) ∼−→A
(
AB,C∗∗

) ∼−→A
(
(AB)C∗,1∗

)

∼−→A
(
A

(
BC∗

)
,1∗

) ∼−→A
(
A,

(
BC∗

)∗)
. (B.49)

When applied to m, this chain of natural isomorphisms yields

m̃= π−1
A,BC∗

[
πAB,C∗(δC ◦m) ◦ αA,B,C∗

]
. (B.50)

Naturality in A (cf. (B.21)) implies that for any u :U→A we have

m̃ ◦ u= π−1
U,BC∗

[
πUB,C∗

(
δC ◦m ◦ (u⊗ idB)

) ◦ αU,B,C∗
]
. (B.51)

Lemma B.8 The following are equivalent.

(i) (K, k) is terminal in Q.
(ii) k :K→A is the kernel of m̃ :A→ (B ⊗C∗)∗.

Proof (i) ⇒ (ii): Let u : U → A be a morphism such that m̃ ◦ u = 0. By (B.51),
then also m ◦ (u⊗ idB)= 0. Thus (U,u) is an object in Q. By terminality there is
a unique arrow f : U → K such that k ◦ f = u. This is the thought-for f in the
universal property of the kernel.

(ii) ⇒ (i): Let (U,u) be an object in Q. Then m ◦ (u⊗ idB) = 0 and as above
we see that m̃ ◦u= 0. By the universal property of the kernel, there is a unique map
f : U → K such that k ◦ f = u. Thus there is a unique morphism f : (U,u)→
(K, k). �

This lemma implies the existence of the left centre of an algebra B in the cat-
egory A. Indeed, the universal property of the left centre from Definition 3.22
amounts to the terminal object condition in the category Q from above with the
choice

m= μB ◦ (idB⊗B − cB,B) : B ⊗B→ B. (B.52)

As the kernel of m̃ exists in A, so does the terminal object in Q and hence the left
centre.

Next, we turn to the proof of Theorem 3.24.

Proof of Theorem 3.24 We need to check that (Z, z)≡ (Cl(R(A)), εA ◦ T (e)) sat-
isfies the universal property in Definition 3.14. Let thus (X,x) be a pair such that
(3.31) commutes.
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By Lemma B.2 with U = A, R′ = R(A) and r ′ = εA, there is a unique map
x̃ :X→R(A) such that (B.18) commutes, i.e. such that εA ◦ T (x̃)= x. This map is
given by (use (B.46) and naturality of ξ )

x̃ = [
X

ξX,A(x)−−−−→R(A)
]= [

X
ηX−→R

(
T (X)

) R(x)−−→R(A)
]
. (B.53)

We will see below that the map x̃ satisfies the condition for the universal property of
the left centre, that is, diagram (3.45) commutes for the pair (X, x̃). Thus, the map
x̃ factors as

Cl(R(A))

e

��,,,,,,,,,

X

x′
$$���������� x̃



 R(A)

(B.54)

Since x̃ is unique and e is mono, also x′ is unique. That x′ makes (3.32) commute
follows from x = εA ◦T (x̃)= εA ◦T (e) ◦T (x′)= z ◦T (x′). This shows that (Z, z)
is the full centre of A.

It remains to check that x̃ satisfies (3.45). For convenience, we reproduce (mini-
mally adapted to our setting) the proof given in Theorem 5.4 in [7]. Substituting the
expression (B.53) for x̃, we need to show commutativity of

X⊗C2 R(A)

ηX⊗id




cX,R(A)

��

(1)

R(T (X))⊗C2 R(A)

R(x)⊗id




R2

��
(2)

R(A)⊗C2 R(A)

R2

��
μR(A)

���
��

��
��

��
��

��
��

�

R(T (X)⊗C A)

R(ϕX,A)

��

R(x⊗id)





(3)

R(A⊗C A)

R(μA)
""!!!!!!!

R(A)

R(A⊗C T (X))
R(id⊗x)





(4)

R(A⊗C A)

R(μA) ##.......

R(A)⊗C2 X

id⊗ηX


 R(A)⊗C2 R(T (X))

id⊗R(x)




R2

��

R(A)⊗C2 R(A)

R2

��
μR(A)

������������������

(B.55)

The rightmost triangles are the Definition (3.30) of μR(A). Squares 2 and 4 are
naturality of R2. Subdiagram 3 is R applied to the defining property (3.31) of x.
Subdiagram 1 is somewhat tedious and is further analysed in Fig. 4. In explaining
the commutativity of the various cells, let us start with the key step: the two ways of
writing the arrow between cells 6 and 7, which amounts toR applied to Lemma 3.10.
Using R(ϕ̂X,RA), cell 6 is R applied to the definition of ϕ̂ in (3.21), and using
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XR(A)

(1)

ηX1





ηXR(A) �����������

cX,RA

��

(5)

RT (X)R(A)

ηRT (X)R(A)

��

R2

%%

(4)

RT(XR(A))

(2)

RT (ηX1)





R(T −1
2 ) ������������

RT (cX,RA)

��

(6)

RT(RT (X)R(A))

R(T −1
2 )

��
R(T (X)T R(A))

(3)

)))))))))))

)))))))))))

R(T (ηX)1)





R(ϕ̂X,RA)≡R(ϕX,TRA)

��

R(T RT (X)T R(A))

R(εT (X)1)

��
R(T (X)T R(A))

R(1εA)





(7)

R(T (X)A)

R(ϕX,A)

��
R(T R(A)T (X))

R(εA1)



 R(AT (X))

R(T R(A)T (X))

(9)

�����������

�����������

R(1T (ηX))

&& R(T R(A)T RT (X))

R(1εT (X))

��

RT(R(A)X)

(10)

RT (1ηX)





R(T −1
2 )

��----------
RT(R(A)RT (X))

R(T −1
2 )

��

R(A)X

(11)

1ηX




ηXR(A)

  *********
R(A)RT (X)

ηRT (X)R(A)

��

R2

''

(8)

Fig. 4 Commutativity of subdiagram (1) in (B.55). All ⊗ have been omitted, instead of id the
shorthand 1 in used, and only a minimum of brackets is given. The commutativity of the individual
cells is explained in the main text

R(ϕX,T RA), cell 7 is R applied to naturality of ϕX,−. The remaining cells are as
follows: cells 1, 5, 11 are naturality of η, cells 2, 10 are naturality of T2, cells 3, 9
are the adjunction property (B.47), cells 4, 8 are the definition (B.48) of R2. �

Appendix C: OPEs in R(W∗)

C.1 OPEs Involving Ω

We will demonstrate that for all fields φ ∈R(W∗) one has

Mz(Ω ⊗ φ)=Mz(φ ⊗Ω)= π(φ) ·Ω, (C.1)
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where Mz(φ ⊗ ψ) is the OPE as introduced in (2.4). We will also use the con-
ventional notation φ(z)ψ(0) for the OPE. To establish (C.1) we will first show
that C2(u|z,0,Ω,Lmφ) = 0 for all φ ∈ F , u ∈ F ′, and m ∈ Z (recall the nota-
tion from Sect. 2.2). Suppose the contrary and let M ∈ Z be the largest integer such
that C2(u|z,0,Ω,LMφ) �= 0. Choose N > 0 such that Lnu= 0 for all n≥N . Ap-
ply property (C5′) for f (ζ )= (z− ζ )−N−MζM+1. Since Ω is annihilated by all Ln,
one checks that (2.17) becomes 0= z−N−MC2(u|z,0,Ω,LMφ), in contradiction to
our assumption. Similarly one checks that C2(u|z,0,Ω,Lmφ)= 0 for all u, φ, m.
Let �, N be such that (L0 +L0 −�)Nφ = 0. Then

0= C2
(
u|z,0,Ω, (L0 +L0 −�)Nφ

)= (−�)NC2(u|z,0,Ω,φ), (C.2)

and so the OPE Ω(z)φ(0) can only be non-vanishing for φ ∈ F (0). Since ω = L0η

and Ω = L2
0η, the OPE vanishes for φ = ω,Ω . To confirm (C.1) it only remains

to check Ω(z)η(0)=Ω(0). Using once more that Ω is annihilated by all Virasoro
modes, we have LmMz(Ω ⊗ η)=Mz(Ω ⊗Lmη), which is zero by the above argu-
ment, and analogouslyLmMz(Ω⊗η)= 0. This applies in particular tom=−1, and
the intersection of the kernels of L−1 and L−1 is CΩ . ThusΩ(z)η(0)= a ·Ω(0) for
some a ∈C. But then also η(z)Ω(0)= a ·Ω(0) and η(z)η(w)Ω(0)= a2 ·Ω(0). On
the other hand, from π(η(z)η(0))= 1 we see that η(z)η(0)= η(0)+ (other fields).
Thus a = 1.

C.2 OPEs Involving the Holomorphic Field T

The next-simplest set of OPEs are those of the form T (z)φ(0). Since T is holo-
morphic, this OPE does not involve logarithmic singularities (or it would not be
single-valued). For example, the most general ansatz for the OPE with ω is

T (z)ω(0)= z−2(P · η(0)+Q ·ω(0)+R ·Ω(0))

+ z−1(S ·L−1η(0)+U ·L−1ω(0)
)+O

(
z0) (C.3)

for some constants P,Q,R,S,U ∈ C. These constants are further constrained by
the identity

LmMz(T ⊗ φ)=
3∑

k=0

(
m+ 1

k

)
zm+1−kMz(Lk−1T ⊗ φ)+Mz(T ⊗Lmφ)

= zm
(

2(m+ 1)+ z ∂
∂z

)
Mz(T ⊗ φ)− 5

6

(
m3 −m)

zm−2π(φ) ·Ω

+Mz(T ⊗Lmφ), (C.4)

where m ∈ Z and φ ∈ F are arbitrary. The first equality follows from (C5′) and the
second uses (4.11) and (C.1). If one applies this identity for m = 0 and m = 1 to
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(C.3), one quickly finds that P =Q= S = 0 and R =U . Thus

T (z)ω(0)=R · (z−2Ω(0)+ z−1L−1ω(0)
)+O

(
z0). (C.5)

This also provides the two-point correlator

η
〈
T (z)ω(0)

〉=R · z−2. (C.6)

Actually, R is necessarily zero, though it will take us a little while to get there. Since
the states of generalised weight (1,0), (2,0) and (3,0) are Virasoro descendants of
η, the same method allows one to determine the z0 and z1 coefficient in this OPE.
The calculations become more lengthy, but the answer is simply

T (z)ω(0)=R · (z−2Ω(0)+ z−1L−1ω(0)+L−2ω(0)+ zL−3ω(0)
)

+O
(
z2). (C.7)

Next we compute T (z)T (0) by using (C.4) to move all Virasoro modes in Mz(T ⊗
(L−2− 3

2L−1L−1)ω) to the left and by then inserting the OPE (C.7). A short calcu-
lation yields

T (z)T (0)=R · {−5z−4Ω(0)+ 2z−2T (0)+ z−1(L−1T )(0)
}+O

(
z0). (C.8)

The OPEs (C.7) and (C.8) allow one to determine the three-point function
η〈T (z)T (w)ω(0)〉 by singularity subtraction. Thinking of the three-point function
as a function of z, this function vanishes at infinity and has poles only at w and 0.
Subtracting these poles we hence find a holomorphic function on C vanishing at
infinity, i.e. a function which is identically zero:

0= η
〈
T (z)T (w)ω(0)

〉−R ·
(

2

(z−w)2
η
〈
T (w)ω(0)

〉

+ 1

(z−w)
∂

∂w

η
〈
T (w)ω(0)

〉+ 1

z

(
− ∂

∂w

)
η
〈
T (w)ω(0)

〉)
. (C.9)

Substituting (C.6), the result is

η
〈
T (z)T (w)ω(0)

〉= 2 ·R2

zw(z−w)2 . (C.10)

Note that this function is invariant under the exchange of z and w as it has to be.
Repeating the above steps to constrain the OPE T (z)η(0) leads to

T (z)η(0)= z−2 · {R ·ω(0)+A ·Ω(0)}+ z−1 · {R · (L−1η)(0)+A · (L−1ω)(0)
}

+
{
R · (L−2η)(0)+ (A+ 1) · (L−2ω)(0)− 3

2
(L−1L−1ω)(0)

}



Logarithmic Bulk and Boundary Conformal Field Theory 165

+ z ·
{
R · (L−3η)(0)+ (A+ 1) · (L−3ω)(0)+ (L−2L−1ω)(0)

− 3

2
(L−1L−1L−1ω)(0)

}
+O

(
z2), (C.11)

where A ∈C is a new constant. The corresponding two-point correlator is

η
〈
T (z)η(0)

〉=A · z−2. (C.12)

As before, the above OPE can be used to determine the OPE of T and t with the
result

T (z)t (0)= z−4 · {−5R ·ω(0)+ (
9R − 5(A+ 1)

) ·Ω(0)}

+ z−2 · {2R · t (0)+ (
R + 2(A+ 1)

) · T (0)}

+ z−1 · {R · (L−1t)(0)+ (A+ 1) · (L−1T )(0)
}+O

(
z0). (C.13)

In a slightly tedious exercise the OPEs determine the three-point correlator of
〈T T η〉 by singularity subtraction to be

η
〈
T (z)T (w)η(0)

〉= −5R

(z−w)4 +
R2

z2w2
+ 2RA

zw(z−w)2 +
2RA

zw3
. (C.14)

Because of the last summand, this expression is only invariant under z↔w if R = 0
or A= 0. To see that actually R = 0 is required, one can compute (in another such
tedious exercise)

η
〈
T (z)T (w)t (0)

〉− η
〈
T (w)T (z)t (0)

〉

= 20R(A+ 1) · (z−w)(z
3 + (3/2)z2w+ (3/2)zw2 +w3)

z5w5
. (C.15)

With R = 0 the correlators η〈T (z)T (w)φ(0)〉 are zero for φ any of ω, η, T , t . The
OPEs (C.7), (C.8), (C.11) and (C.13) reproduce the formulas in (4.30).

C.3 OPEs of Generalised Weight Zero Fields

Next we consider the non-holomorphic OPE ω(z)ω(0). The identity corresponding
to (C.4) reads in this case

LmMz(ω⊗ φ)= zm+1 ∂

∂z
Mz(ω⊗ φ)+ (m+ 1)zmπ(φ) ·Ω

+Mz(ω⊗Lmφ), (C.16)
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for all φ ∈ F and m ∈ Z, and analogously for Lm. For m= 0 we find in particular
that

(
L0 − z ∂

∂z

)
Mz(ω⊗ω)= 0=

(
L0 − z̄ ∂

∂z̄

)
Mz(ω⊗ω). (C.17)

The general solution to this first order differential equation reads

Mz(ω⊗ω)= exp
{
ln(z)L0 + ln(z̄)L0

}
Ψ for some Ψ ∈ F . (C.18)

This shows that the leading term in the OPE is (take the component of Ψ in F (0) to
be X · η+ Y ·ω+B ·Ω)

ω(z)ω(0)=X · η(0)+ {
Y +X ln

(|z|2)}ω(0)

+
{
B + Y ln

(|z|2)+ 1

2
X · (ln

(|z|2))2
}
Ω(0)+ · · · (C.19)

This expression can be used to compute the leading term in the OPE ω(z)T (0),
which we already know from (4.30) to be of order O(z0). Using (C.16) to move
the Lm modes past ω(z) one quickly finds the requirement that X = Y = 0. This
reproduces (4.32). For η(z)ω(0) we use (C.4) in the form

LmMz(η⊗ω)= zm+1 ∂

∂z
Mz(η⊗ω)+ (m+ 1)zmMz(ω⊗ω)

+Mz(η⊗Lmω), (C.20)

and analogously for Lm. We can again make a general ansatz for the leading term in
the OPE η(z)ω(0) and use the knowledge of ω(z)ω(0) and η(z)T (0) (from (4.30))
to constrain the coefficients. The result is as stated in (4.32), we skip the details.
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Abstract This is the first part in a series of papers in which we introduce and de-
velop a natural, general tensor category theory for suitable module categories for
a vertex (operator) algebra. This theory generalizes the tensor category theory for
modules for a vertex operator algebra previously developed in a series of papers by
the first two authors to suitable module categories for a “conformal vertex algebra”
or even more generally, for a “Möbius vertex algebra.” We do not require the mod-
ule categories to be semisimple, and we accommodate modules with generalized
weight spaces. As in the earlier series of papers, our tensor product functors depend
on a complex variable, but in the present generality, the logarithm of the complex
variable is required; the general representation theory of vertex operator algebras re-
quires logarithmic structure. This work includes the complete proofs in the present
generality and can be read independently of the earlier series of papers. Since this
is a new theory, we present it in detail, including the necessary new foundational
material. In addition, with a view toward anticipated applications, we develop and
present the various stages of the theory in the natural, general settings in which the
proofs hold, settings that are sometimes more general than what we need for the
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In this paper, Part I of a series of eight papers, we give a detailed overview of loga-
rithmic tensor category theory, state our main results and introduce the basic objects
that we shall study in this work. We include a brief discussion of some of the recent
applications of this theory, and also a discussion of some recent literature. The sec-
tions, equations, theorems and so on are numbered globally in the series of papers
rather than within each paper, so that for example equation (a.b) is the b-th labeled
equation in Sect. a, which is contained in the paper indicated as follows: The present
paper, Part I, contains Sects. 1 and 2. In Part II [81], which contains Sect. 3, we de-
velop logarithmic formal calculus and study logarithmic intertwining operators. In
Part III [82], which contains Sect. 4, we introduce and study intertwining maps and
tensor product bifunctors. In Part IV [83], which contains Sects. 5 and 6, we give
constructions of the P(z)- and Q(z)-tensor product bifunctors using what we call
“compatibility conditions” and certain other conditions. In Part V [84], which con-
tains Sects. 7 and 8, we study products and iterates of intertwining maps and of
logarithmic intertwining operators and we begin the development of our analytic
approach. In Part VI [85], which contains Sects. 9 and 10, we construct the appro-
priate natural associativity isomorphisms between triple tensor product functors. In
Part VII [86], which contains Sect. 11, we give sufficient conditions for the exis-
tence of the associativity isomorphisms. In Part VIII [87], which contains Sect. 12,
we construct braided tensor category structure.

1 Introduction

A Brief Description of the Present Work In the representation theory of many
important algebraic structures, such as Lie algebras, groups (or group algebras),
commutative associative algebras, Hopf algebras or quantum groups, tensor product
operations among modules play a central role. They not only give new modules from
known ones, but they of course also provide a powerful tool for studying modules.
More significantly, suitable categories of modules for such algebras, equipped with
tensor product operations and appropriate natural isomorphisms, and so on, become
symmetric or braided tensor categories, and this tensor category structure is always
used, even when it is not explicitly discussed.

Vertex operator algebras, and more generally, vertex algebras, are a fundamental
class of algebraic structures whose extensive theory has been developed and used
in recent years to provide the means to illuminate and to solve many problems in a
wide variety of areas of mathematics and theoretical physics. In particular, the rep-
resentation theory of vertex (operator) algebras plays deep roles in the construction
and study of infinite-dimensional Lie algebra representations, of structures linking
sporadic finite simple groups to string theory and to the theory of modular functions,
and of knot invariants and 3-manifold invariants, in mathematics; and of conformal
field theory and string theory, in physics.

The present work is devoted to introducing and developing a natural, general
tensor category theory for suitable module categories for a vertex (operator) algebra.
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This tensor category theory, and consequently, the representation theory, of vertex
(operator) algebras, is much, much more elaborate and more difficult than that of
Lie algebras, commutative associative algebras, Hopf algebras or quantum groups.
In fact, the vertex-operator-algebraic analogues of even the most elementary parts
of the tensor product theory of an algebra such as one of those are highly nontrivial,
and the theory needs to be developed with completely new ideas and strategies (and
with great care!). The present theory was what we needed to carry out in order to
obtain the appropriate vertex-operator-algebraic analogue of the following routine
triviality in the representation theory of (for example) Lie algebras: “Given a Lie
algebra g, consider the symmetric tensor category of g-modules.” A vertex operator
algebra “wants to be” the space of primitive elements of a Hopf algebra (as is a Lie
algebra, for example; this immediately yields the tensor category of modules), but a
vertex operator algebra is not the space of primitive elements of any Hopf algebra,
and this is the beginning of why the problem of constructing a tensor product theory
and a tensor category theory of modules for a vertex operator algebra was (and is)
hard. Yet it is at least as important to have a theory of tensor products and tensor
categories of modules for a vertex operator algebra as it is in classical theories such
as Lie algebra theory (where such tensor products and tensor categories of modules
exist “automatically”).

In Lie algebra theory (among other theories), many important module categories
are semisimple, that is, every module is completely reducible, while on the other
hand, many important module categories are not. Earlier, the first two authors de-
veloped a theory of braided tensor categories for the module category of a what
we call a “finitely reductive” vertex operator algebra satisfying certain additional
conditions; finite reductivity means that the module category is semisimple and that
certain finiteness conditions hold. But it is just as natural and important to develop
a theory for non-semisimple module categories in vertex operator algebra theory
as it is in Lie algebra theory. Also, in any one of the classical theories such as Lie
algebra theory, observing that there is a tensor category of modules is just as easy
for not-necessarily-semisimple modules as it is for semisimple modules. For these
and many other reasons, we considered it a natural problem to generalize the tensor
category theory for vertex operator algebras from the finitely reductive case to the
general case.

The present work accomplishes this goal, culminating in the construction of
a braided tensor category structure on a suitable module category, not assumed
semisimple, for a vertex (operator) algebra. It turns out the non-semisimplicity of
modules is intimately linked to the presence of logarithms in the basic ingredients of
the theory, beginning with intertwining operators among modules, and this is why
we call the present theory “logarithmic tensor category theory.” We must in fact
consider “generalized modules”—structures for which a certain basic operator has
generalized eigenvectors in addition to ordinary eigenvectors. This basic operator
is contained in a natural copy of the three-dimensional simple Lie algebra, which
plays the role of the Lie algebra of the group of Möbius symmetries; this Lie algebra
is in turn a subalgebra of a natural copy of the Virasoro algebra, a central extension
of a Lie algebra of conformal symmetries. In this work, we carry out our theory for
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suitable categories of generalized modules for a “conformal vertex algebra,” which
includes a copy of the Virasoro algebra, and even more generally, for a “Möbius
vertex algebra,” which has the Möbius symmetries but not all of the conformal sym-
metries. The present theory explicitly includes the earlier finitely reductive theory
as a special case; however, the present theory is (necessarily) much more elaborate
and subtle than the finitely reductive theory.

In both the finitely reductive and the logarithmic generality, even the construc-
tion of the tensor product (generalized) modules is nontrivial; the correct tensor
product module of two modules (when it exists) is not at all based on the tensor
product vector space of the two underlying vector spaces. Moreover, the construc-
tion of the necessary natural associativity isomorphisms among triples of modules is
highly nontrivial. While in classical tensor product theories the natural associativity
isomorphisms among triples of modules are given by the usual trivial maps, in the
tensor product theory of modules for a vertex (operator) algebra, the corresponding
statement is not at all true, and indeed, there are not even any candidates for easy as-
sociativity isomorphisms. These and many related issues require the present tensor
product and tensor category theory to be elaborate.

A crucial discovery in the work of the first two authors in the finitely reductive
case was the existence of natural tensor products of two or more elements in the
algebraic completions of tensor product modules. All of the categorical structures
and properties are formulated, constructed and/or proved using tensor products of
elements. In the finitely reductive case, tensor products of elements were defined
using intertwining operators (without logarithms). In order to develop the tensor
category theory in the general setting of the present work, it is again crucial to
establish the existence of tensor products of elements and to prove the fundamental
properties of these tensor product elements, and to do this, we are inevitably led to
the development of the theory of logarithmic intertwining operators.

The structures of tensor product module, natural associativity isomorphisms, and
resulting braided tensor category structure incorporating these, constructed in the
present work, are assumed to exist in a number of research works in mathematics
and physics. The results in the present work allow one to remove assumptions of this
type. We provide a mathematical foundation for such results and for ongoing and
future research involving the representation theory of vertex (operator) algebras.

In fact, what we actually construct in this work is structure much stronger than
braided tensor category structure: The natural associativity isomorphisms are con-
structed by means of a “logarithmic operator product expansion” theorem for log-
arithmic intertwining operators. This logarithmic operator product expansion is in
fact the starting point of “logarithmic conformal field theory,” which has been stud-
ied extensively by physicists as well as mathematicians. Here, this logarithmic op-
erator product expansion is established as a mathematical theorem.

Moreover, our constructions and proofs in this work actually give what the first
two authors have called “vertex-tensor-categorical structure,” in which the tensor
product bifunctors depend crucially on complex variables. This structure is neces-
sary for producing the desired braided tensor category structure, through the use of
the tensor product elements and logarithmic operator product expansion mentioned
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above, and our construction of braided tensor category structure involves a “limit-
ing process” in which the complex-analytic information is “forgotten” and only the
“topological” information associated with braided tensor category structure is re-
tained. When we perform this specialization to the “limiting case” of braided tensor
category structure, tensor products of three or more elements are no longer defined.

The word “algebra” appears in the phrases “vertex operator algebra” and “vertex
algebra,” but beginning at the stage of the theory where one must compose inter-
twining operators, or rather, intertwining maps, among (generalized) modules, one
must use analysis as well as algebra, starting even from the definition of composi-
tion of intertwining maps. The kind of algebra on which the theory is largely based,
and which is needed throughout, is called “formal calculus,” which we must in fact
extensively develop in the course of the work. We must also enhance formal calcu-
lus with a great deal of analytic reasoning, and the synthesized theory is no longer
“pure algebra.”

This work includes the complete proofs in the present generality and can be
read independently of the first two authors’ earlier series of papers carrying out the
finitely reductive theory. Since this is a new theory, we present it in detail, including
the necessary new foundational material. In addition, we develop and present the
various stages of the theory in the natural, general settings in which the proofs hold,
settings that are sometimes more general than what we need for the main conclu-
sions. This will allow for the future use of the intermediate results in a variety of
directions.

Later in the Introduction, we mention some of the recent applications of the
present theory, and we include a discussion of some recent literature. We state the
main results of the present work at the end of the Introduction.

The main results presented here have been announced in [80].

Introduction In a series of papers ([53, 68, 71–74]), the first two authors have
developed a tensor product and tensor category theory for modules for a vertex
operator algebra under suitable conditions. A structure called “vertex tensor cate-
gory structure” (see [71]), which is much richer than tensor category structure, has
thereby been established for many important categories of modules for classes of
vertex operator algebras, since the conditions needed for invoking the general the-
ory have been verified for these categories. The most important such families of
examples of this theory are listed in Sect. 1.1 below. In the present work, which has
been announced in [80], we generalize this tensor category theory to a larger family
of module categories, for a “conformal vertex algebra,” or even more generally, for
a “Möbius vertex algebra,” under suitably relaxed conditions. A conformal vertex
algebra is just a vertex algebra in the sense of Borcherds [15] equipped with a con-
formal vector satisfying the usual axioms; a Möbius vertex algebra is a variant of a
“quasi-vertex operator algebra” as in [38]. Central features of the present work are
that we do not require the modules in our categories to be completely reducible and
that we accommodate modules with generalized weight spaces.

As in the earlier series of papers, our tensor product functors depend on a com-
plex variable, but in the present generality, the logarithm of the complex variable is
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required. The first part of this work is devoted to the study of logarithmic intertwin-
ing operators and their role in the construction of the tensor product functors. The
remainder of this work is devoted to the construction of the appropriate natural asso-
ciativity isomorphisms between triple tensor product functors, to the proof of their
fundamental properties, and to the construction of the resulting braided tensor cat-
egory structure. This leads to vertex tensor category structure for further important
families of examples, or, in the Möbius case, to “Möbius vertex tensor category”
structure.

We emphasize that we develop our representation theory (tensor category the-
ory) in a very general setting; the vertex (operator) algebras that we consider are
very general, and the “modules” that we consider are very general. We call them
“generalized modules”; they are not assumed completely reducible. Many extremely
important (and well-understood) vertex operator algebras have semisimple module
categories, but in fact, now that the theory of vertex operator algebras and of their
representations is as highly developed as it has come to be, it is in fact possible, and
very fruitful, to work in the greater generality. Focusing mainly on the representa-
tion theory of those vertex operator algebras for which every module is completely
reducible would be just as restrictive as focusing, classically, on the representation
theory of semisimple Lie algebras as opposed to the representation theory of Lie
algebras in general. In addition, once we consider suitably general vertex (opera-
tor) algebras, it is unnatural to focus on only those modules that are completely
reducible. As we explain below, such a general representation theory of vertex (op-
erator) algebras requires logarithmic structure.

A general representation theory of vertex operator algebras is crucial for a range
of applications, and we expect that it will be a foundation for future developments.
One example is that the original formulation of the uniqueness conjecture [37] for
the moonshine module vertex operator algebra V * (again see [37]) requires (gen-
eral) vertex operator algebras whose modules might not be completely reducible.
Another example is that this general theory is playing a deep role in the (mathe-
matical) construction of conformal field theories (cf. [61–64, 98]), which in turn
correspond to the perturbative part of string theory. Just as the classical (general)
representation theory of groups, or of Lie groups, or of Lie algebras, is not about
any particular group or Lie group or Lie algebra (although one of its central goals
is certainly to understand the representations of particular structures), the general
representation theory of suitably general vertex operator algebras is “background
independent,” in the terminology of string theory. In addition, the general represen-
tation theory of vertex (operator) algebras can be thought of as a “symmetry” theory,
where vertex (operator) algebras play a role analogous to that of groups or of Lie
algebras in classical theories; deep and well-known analogies between the notion
of vertex operator algebra and the classical notion of, for example, Lie algebra are
discussed in several places, including [37, 38] and [99].

As we mentioned above, the present work includes the complete proofs in the
present generality and can be read independently of the earlier series of papers of
the first two authors constructing tensor categories. Our treatment is based on the
theory of vertex operator algebras and their modules as developed in [15, 21, 37, 38]
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and [99]. Throughout the work, we must, and do, develop new algebraic and analytic
methods, including a synthesis of the “formal calculus” of vertex operator algebra
theory with analysis.

1.1 Tensor Category Theory for Finitely Reductive Vertex Operator
Algebras

The main families for which the conditions needed for invoking the first two au-
thors’ general tensor category theory have been verified, thus yielding vertex tensor
category structure [71] on these module categories, include the module categories
for the following classes of vertex operator algebras (or, in the last case, vertex op-
erator superalgebras):

1. The vertex operator algebras VL associated with positive definite even lattices L;
see [15, 37] for these vertex operator algebras and see [19, 21] for the conditions
needed for invoking the general tensor category theory.

2. The vertex operator algebras L(k,0) associated with affine Lie algebras and pos-
itive integers k; see [35] for these vertex operator algebras and [35, 75] for the
conditions.

3. The “minimal series” of vertex operator algebras associated with the Virasoro
algebra; see [35] for these vertex operator algebras and [54, 139] for the condi-
tions.

4. Frenkel, Lepowsky and Meurman’s moonshine module V *; see [15, 36, 37] for
this vertex operator algebra and [20] for the conditions.

5. The fixed point vertex operator subalgebra of V * under the standard involution;
see [36, 37] for this vertex operator algebra and [20, 55] for the conditions.

6. The “minimal series” of vertex operator superalgebras (suitably generalized ver-
tex operator algebras) associated with the Neveu-Schwarz superalgebra and also
the “unitary series” of vertex operator superalgebras associated with the N = 2
superconformal algebra; see [88] and [3] for the correspondingN = 1 andN = 2
vertex operator superalgebras, respectively, and [2, 4, 77, 78] for the conditions.

In addition, vertex tensor category structure has also been established for the
module categories for certain vertex operator algebras built from the vertex operator
algebras just mentioned, such as tensor products of such algebras; this is carried out
in certain of the papers listed above.

For all of the six classes of vertex operator algebras (or superalgebras) listed
above, each of the algebras is “rational” in the specific sense of Huang-Lepowsky’s
work on tensor category theory. This particular “rationality” property is easily
proved to be a sufficient condition for insuring that the tensor product modules ex-
ist; see for instance [72]. Unfortunately, the phrase “rational vertex operator algebra”
also has several other distinct meanings in the literature. Thus we find it convenient
at this time to assign a new term, “finite reductivity,” to our particular notion of
“rationality”: We say that a vertex operator algebra (or superalgebra) V is finitely
reductive if:
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1. Every V -module is completely reducible.
2. There are only finitely many irreducible V -modules (up to equivalence).
3. All the fusion rules (the dimensions of the spaces of intertwining operators

among triples of modules) for V are finite.

We choose the term “finitely reductive” because we think of the term “reductive”
as describing the complete reducibility—the first of the conditions (that is, the al-
gebra “(completely) reduces” every module); the other two conditions are finiteness
conditions.

The vertex-algebraic study of tensor category structure on module categories for
certain vertex algebras was stimulated by the work of Moore and Seiberg [111, 112],
in which, in the study of what they termed “rational” conformal field theory, they
obtained a set of polynomial equations based on the assumption of the existence of a
suitable operator product expansion for “chiral vertex operators” (which correspond
to intertwining operators in vertex algebra theory) and observed an analogy between
the theory of this set of polynomial equations and the theory of tensor categories.
Earlier, in [14], Belavin, Polyakov, and Zamolodchikov had already formalized the
relation between the (nonmeromorphic) operator product expansion, chiral correla-
tion functions and representation theory, for the Virasoro algebra in particular, and
Knizhnik and Zamolodchikov [96] had established fundamental relations between
conformal field theory and the representation theory of affine Lie algebras. As we
have discussed in the introductory material in [71, 72] and [75], such study of con-
formal field theory is deeply connected with the vertex-algebraic construction and
study of tensor categories, and also with other mathematical approaches to the con-
struction of tensor categories in the spirit of conformal field theory. Concerning the
latter approaches, we would like to mention that the method used by Kazhdan and
Lusztig, especially in their construction of the associativity isomorphisms, in their
breakthrough work in [91–95], is related to the algebro-geometric formulation and
study of conformal-field-theoretic structures in the influential works of Tsuchiya-
Ueno-Yamada [135], Drinfeld [23] and Beilinson-Feigin-Mazur [13]. See also the
important work of Deligne [18], Finkelberg ([28, 29]), Bakalov-Kirillov [12] and
Nagatomo-Tsuchiya [113] on the construction of tensor categories in the spirit of
this approach to conformal field theory, and also the discussions in Remark 1.8 and
in Sect. 1.5 below.

1.2 Logarithmic Tensor Category Theory

The semisimplicity of the module categories mentioned in the examples above is
related to another property of these modules, namely, that each module is a direct
sum of its “weight spaces,” which are the eigenspaces of a special operator L(0)
coming from the Virasoro algebra action on the module. But there are important
situations in which module categories are not semisimple and in which modules
are not direct sums of their weight spaces. Notably, for the vertex operator algebras
L(k,0) associated with affine Lie algebras, when the sum of k and the dual Coxeter
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number of the corresponding Lie algebra is not a nonnegative rational number, the
vertex operator algebra L(k,0) is not finitely reductive, and, working with Lie al-
gebra theory rather than with vertex operator algebra theory, Kazhdan and Lusztig
constructed a natural braided tensor category structure on a certain category of mod-
ules of level k for the affine Lie algebra ([91–95]). This work of Kazhdan-Lusztig
in fact motivated the first two authors to develop an analogous theory for vertex
operator algebras rather than for affine Lie algebras, as was explained in detail in
the introductory material in [68, 71–73], and [75]. However, this general theory, in
its original form, did not apply to Kazhdan-Lusztig’s context, because the vertex-
operator-algebra modules considered in [53, 68, 71–74] are assumed to be the direct
sums of their weight spaces (with respect to L(0)), and the non-semisimple modules
considered by Kazhdan-Lusztig fail in general to be the direct sums of their weight
spaces. Although their setup, based on Lie theory, and ours, based on vertex opera-
tor algebra theory, are very different (as was discussed in the introductory material
in our earlier papers), we expected to be able to recover (and further extend) their
results through our vertex operator algebraic approach, which is very general, as we
discussed above. This motivated us, in the present work, to generalize the work of
the first two authors by considering modules with generalized weight spaces, and es-
pecially, intertwining operators associated with such generalized kinds of modules.
As we discuss below, this required us to use logarithmic intertwining operators and
logarithmic formal calculus, and we have been able to construct braided tensor cate-
gory structure, and even vertex tensor category structure, on important module cate-
gories that are not semisimple. Using the present theory, the third author ([141, 142])
has indeed recovered the braided tensor category structure of Kazhdan-Lusztig, and
has also extended it to vertex tensor category structure. While in our theory, logarith-
mic structure plays a fundamental role, in this Kazhdan-Lusztig work, logarithmic
structure does not show up explicitly.

From the viewpoint of the general representation theory of vertex operator al-
gebras, it would be unnatural to study only semisimple modules or only L(0)-
semisimple modules; focusing only on such modules would be analogous to focus-
ing only on semisimple modules for general (nonsemisimple) finite-dimensional Lie
algebras. And as we have pointed out, working in this generality leads to logarith-
mic structure; the general representation theory of vertex operator algebras requires
logarithmic structure.

Logarithmic structure in conformal field theory was in fact first introduced by
physicists to describe Wess-Zumino-Witten models on supergroups ([132, 133]) and
disorder phenomena [51]. A lot of progress has been made on this subject. We refer
the interested reader to the review articles [31, 42, 118] and [39], and references
therein. One particularly interesting class of logarithmic conformal field theories is
the class associated to the triplet W-algebras W(1,p) introduced by Kausch [89],

of central charge 1 − 6 (p−1)2

p
, p = 2,3, . . . . We will discuss these algebras, and

generalizations of them, including references, in Sect. 1.5 below. The paper [40]
initiated a study of a possible generalization of the Verlinde conjecture for rational
conformal field theories to these theories; see also [32, 33, 47] and [49]. The paper
[39] assumed the existence of braided tensor category structures on the categories of
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modules for the vertex operator algebras considered; together with [65], the present
work gives a construction of these structures. The paper [17] used the results in the
present work as announced in [80].

Here is how such logarithmic structure also arises naturally in the representation
theory of vertex operator algebras: In the construction of intertwining operator alge-
bras, the first author proved (see [59]) that if modules for the vertex operator algebra
satisfy a certain cofiniteness condition, then products of the usual intertwining op-
erators satisfy certain systems of differential equations with regular singular points.
In addition, it was proved in [59] that if the vertex operator algebra satisfies certain
finite reductivity conditions, then the analytic extensions of products of the usual
intertwining operators have no logarithmic terms. In the case when the vertex op-
erator algebra satisfies only the cofiniteness condition but not the finite reductivity
conditions, the products of intertwining operators still satisfy systems of differential
equations with regular singular points. But in this case, the analytic extensions of
such products of intertwining operators might have logarithmic terms. This means
that if we want to generalize the results in [53, 68, 71–74] and [59] to the case in
which the finite reductivity properties are not always satisfied, we have to consider
intertwining operators involving logarithmic terms.

Logarithmic structure also appears naturally in modular invariance results for
vertex operator algebras and in the genus-one parts of conformal field theories. For
a vertex operator algebra V satisfying certain finiteness and reductivity conditions,
Zhu proved in [144] a modular invariance result for q-traces of products of vertex
operators associated to V -modules. Zhu’s result was generalized to the case involv-
ing twisted vertex operators by Dong, Li and Mason in [22] and to the case of q-
traces of products of one intertwining operator and arbitrarily many vertex operators
by Miyamoto in [107]. In [106], Miyamoto generalized Zhu’s modular invariance
result to a modular invariance result involving the logarithm of q for vertex opera-
tor algebras not necessarily satisfying the reductivity condition. In [60], for vertex
operator algebras satisfying certain finiteness and reductivity conditions, by over-
coming the difficulties one encounters if one tries to generalize Zhu’s method, the
first author was able to prove the modular invariance for q-traces of products and
iterates of more than one intertwining operator, using certain differential equations
and duality properties for intertwining operators. If the vertex operator algebra satis-
fies only Zhu’s cofiniteness condition but not the reductivity condition, the q-traces
of products and iterates of intertwining operators still satisfy the same differential
equations, but now they involve logarithms of all the variables. To generalize the
general Verlinde conjecture proved in [63] and the modular tensor category struc-
ture on the category of V -modules obtained in [64], one will need such general
logarithmic modular invariance. See [39, 40, 47] and [49] for research in this direc-
tion.

In [104], Milas introduced and studied what he called “logarithmic modules”
and “logarithmic intertwining operators.” See also [105]. Roughly speaking, loga-
rithmic modules are weak modules for a vertex operator algebra that are direct sums
of generalized eigenspaces for the operator L(0). We will call such weak modules
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“generalized modules” in this work. Logarithmic intertwining operators are opera-
tors that depend not only on powers of a (formal or complex) variable x, but also on
its logarithm logx.

The special features of the logarithm function make the logarithmic theory very
subtle and interesting. In order to develop our logarithmic tensor category theory,
we were required to considerably develop:

1. Formal calculus, beyond what had been developed in [37, 38, 53, 72–74] and
[99], in particular. (Formal calculus has been developed in a great many works.)

2. What we may call “logarithmic formal calculus,” which involves arbitrary pow-
ers of formal variables and of their formal logarithms. This logarithmic formal
calculus has been extended and exploited by Robinson [129–131].

3. Complex analysis involving series containing arbitrary real powers of the vari-
ables.

4. Complex analysis involving series containing nonnegative integral powers of the
logarithms of the variables, in the presence of arbitrary real powers of the vari-
ables.

5. A blending of these themes in order to formulate and to prove many interchange-
of-limit results necessary for the construction of the ingredients of the logarith-
mic tensor category theory and for the proofs of the fundamental properties.

Our methods intricately combine both algebra and analysis, and must do so, since
the statements of the results themselves are both algebraic and analytic. See Re-
mark 1.7 below for a discussion of these methods and their roles in this work.

As we mentioned above, one important application of our generalization is to
the category Oκ of certain modules for an affine Lie algebra studied by Kazhdan
and Lusztig in their series of papers [91–95]. It has been shown in [141] and [142]
by the third author that, among other things, all the conditions needed to apply our
theory to this module category are satisfied. As a result, it is proved in [141] and
[142] that there is a natural vertex tensor category structure on this module category,
giving in particular a new construction, in the context of general vertex operator
algebra theory, of the braided tensor category structure on Oκ . This construction
does not use the Knizhnik-Zamolodchikov equations. The methods used in [91–95]
were very different; the Knizhnik-Zamolodchikov equations play an essential role
in their construction, while the present theory is very general.

The triplet W-algebras belong to a different class of vertex operator algebras,
satisfying certain finiteness, boundedness and reality conditions. In this case, it has
been shown in [65] by the first author that all the conditions needed to apply the
theory carried out in the present work to the category of grading-restricted modules
for the vertex operator algebra are also satisfied. Thus, by the results obtained in this
work, there is a natural vertex tensor category structure on this category.

In addition to these logarithmic issues, another way in which the present work
generalizes the earlier tensor category theory for module categories for a vertex op-
erator algebra is that we now allow the algebras to be somewhat more general than
vertex operator algebras, in order, for example, to accommodate module categories
for the vertex algebras VL where L is a nondegenerate even lattice that is not neces-
sarily positive definite (cf. [15, 21]); see [141].
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What we accomplish in this work, then, is the following: We generalize essen-
tially all the results in [72–74] and [53] from the category of modules for a vertex
operator algebra to categories of suitably generalized modules for a conformal ver-
tex algebra or a Möbius vertex algebra equipped with an additional suitable grading
by an abelian group. The algebras that we consider include not only vertex operator
algebras but also such vertex algebras as VL where L is a nondegenerate even lat-
tice, and the modules that we consider are not required to be the direct sums of their
weight spaces but instead are required only to be the (direct) sums of their “gener-
alized weight spaces,” in a suitable sense. In particular, in this work we carry out,
in the present greater generality, the construction theory for the “P(z)-tensor prod-
uct” functor originally done in [72, 73] and [74] and the associativity theory for this
functor—the construction of the natural associativity isomorphisms between suit-
able “triple tensor products” and the proof of their important properties, including
the isomorphism property—originally done in [53]. This leads, as in [71, 76], to the
proof of the coherence properties for vertex tensor categories, and in the Möbius
case, the coherence properties for Möbius vertex tensor categories.

For simplicity, we present our theory only for a conformal vertex algebra or a
Möbius vertex algebra and not for their superalgebraic analogues, but in fact our
theory generalizes routinely to a conformal vertex superalgebra or a Möbius vertex
superalgebra equipped with an additional suitable grading by an abelian group; here
we are referring only to the usual sign changes associated with the “odd” subspace
of a vertex superalgebra, and not to any superconformal structure.

The general structure of much of this work essentially follows that of [72–74]
and [53]. However, the results here are much stronger and much more general than
in these earlier works, and in addition, many of the results here have no counterparts
in those works. Moreover, many ideas, formulations and proofs in this work are
necessarily quite different from those in the earlier papers, and we have chosen to
give some proofs that are new even in the finitely reductive case studied in the earlier
papers.

Some of the new ingredients that we are introducing into the theory here are: an
analysis of logarithmic intertwining operators, including “logarithmic formal cal-
culus”; a notion of “P(z1, z2)-intertwining map” and a study of its properties; new
“compatibility conditions”; considerable generalizations of virtually all of the tech-
nical results in [72–74] and [53]; and perhaps most significantly, the analytic ideas
and methods that are sketched in Remark 1.7 below.

The contents of the sections of this work are as follows: In the rest of this In-
troduction we compare classical tensor product and tensor category theory for Lie
algebra modules with tensor product and tensor category theory for vertex oper-
ator algebra modules. One crucial difference between the two theories is that in
the vertex operator algebra setting, the theory depends on an “extra parameter” z,
which must be understood as a (nonzero) complex variable rather than as a formal
variable (although one needs, and indeed we very heavily use, an extensive “for-
mal calculus,” or “calculus of formal variables,” in order to develop the theory). We
also discuss recent applications of the present theory and some related literature and
state the main results of the present work. In Sect. 2 we recall and extend some
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basic concepts in the theory of vertex (operator) algebras. We use the treatments of
[21, 37, 38] and [99]; in particular, the formal-calculus approach developed in these
works is needed for the present theory. Readers can consult these works for further
detail. We also set up notation and terminology that will be used throughout the
present work, and we describe the main categories of (generalized) modules that we
will consider. In Sect. 3 we introduce the notion of logarithmic intertwining operator
as in [104] and present a detailed study of the basic properties of these operators.
At the beginning of this section we introduce and prove results about logarithmic
formal calculus, including a general “formal Taylor theorem.” In Sects. 4 and 5
we present the notions of P(z)- and Q(z)-intertwining maps, and based on this,
the definitions and constructions of P(z)- and Q(z)-tensor products, generalizing
considerations in [72, 73] and [74]. The constructions of the tensor product functors
require certain “compatibility conditions” and “local grading restriction conditions.”
The proofs of some of the results in Sect. 5 are postponed to Sect. 6. In Sect. 7 the
convergence condition for products and iterates of intertwining maps introduced in
[53] is generalized to the present context. More importantly, in this section we start
to develop the complex analysis approach that we will heavily use in later sections.
The new notion of P(z1, z2)-intertwining map, generalizing the corresponding con-
cept in [53], is introduced and developed in Sect. 8. This will play a crucial role in
the construction of the natural associativity isomorphisms. In Sect. 9 we prove im-
portant conditions that are satisfied by vectors in the dual space of the vector-space
tensor product of three modules that arise from products and from iterates of inter-
twining maps. This leads us to study elements in this dual space satisfying suitable
compatibility and local grading restriction conditions. In this section we extensively
use our complex analysis approach, including, in particular, for proving that the or-
der of many iterated summations can be interchanged. By relating the subspaces
considered in Sect. 9, we construct the associativity isomorphisms in Sect. 10. In
Sect. 11, we generalize certain sufficient conditions for the existence of the associa-
tivity isomorphisms in [53], and we prove the relevant conditions using differential
equations. In Sect. 12, we establish the coherence properties of our braided tensor
category structure.

1.3 The Lie Algebra Case

In this section and the next, we compare classical tensor product and tensor category
theory for Lie algebra modules with the present theory for vertex operator algebra
modules, and in fact it is heuristically useful to start by considering tensor product
theory for Lie algebra modules in a somewhat unusual way in order to motivate our
approach for the case of vertex (operator) algebras.

In the theory of tensor products for modules for a Lie algebra, the tensor product
of two modules is defined, or rather, constructed, as the vector-space tensor prod-
uct of the two modules, equipped with a Lie algebra module action given by the
familiar diagonal action of the Lie algebra. In the vertex algebra case, however, the
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vector-space tensor product of two modules for a vertex algebra is not the correct
underlying vector space for the tensor product of the vertex-algebra modules. In this
section we therefore consider another approach to the tensor category theory for
modules for a Lie algebra—an approach, based on “intertwining maps,” that will
show how the theory proceeds in the vertex algebra case. Then, in the next section,
we shall lay out the corresponding “road map” for the tensor category theory in the
vertex algebra case, which we then carry out in the body of this work.

We first recall the following elementary but crucial background about tensor
product vector spaces: Given vector spaces W1 and W2, the corresponding tensor
product structure consists of a vector space W1 ⊗W2 equipped with a bilinear map

W1 ×W2 −→W1 ⊗W2,

denoted

(w(1),w(2)) �→w(1) ⊗w(2)
for w(1) ∈W1 and w(2) ∈W2, such that for any vector space W3 and any bilinear
map

B :W1 ×W2 −→W3,

there is a unique linear map

L :W1 ⊗W2 −→W3

such that

B(w(1),w(2))= L(w(1) ⊗w(2))
for w(i) ∈ Wi , i = 1,2. This universal property characterizes the tensor product
structure W1⊗W2, equipped with its bilinear map · ⊗ ·, up to unique isomorphism.
In addition, the tensor product structure in fact exists.

As was illustrated in [71], and as is well known, the notion of tensor product
of modules for a Lie algebra can be formulated in terms of what can be called
“intertwining maps”: LetW1,W2,W3 be modules for a fixed Lie algebra V . (We are
calling our Lie algebra V because we shall be calling our vertex algebra V , and we
would like to emphasize the analogies between the two theories.) An intertwining
map of type

(
W3

W1W2

)
is a linear map I :W1⊗W2 −→W3 (or equivalently, from what

we have just recalled, a bilinear map W1 ×W2 −→W3) such that

π3(v)I (w(1) ⊗w(2))= I
(
π1(v)w(1) ⊗w(2)

)+ I(w(1) ⊗ π2(v)w(2)
)

(1.1)

for v ∈ V and w(i) ∈Wi , i = 1,2, where π1, π2, π3 are the module actions of V on
W1, W2 and W3, respectively. (Clearly, such an intertwining map is the same as a
module map from W1 ⊗W2, equipped with the tensor product module structure, to
W3, but we are now temporarily “forgetting” what the tensor product module is.)

A tensor product of the V -modules W1 and W2 is then a pair (W0, I0), where
W0 is a V -module and I0 is an intertwining map of type

(
W0

W1W2

)
(which, again,
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could be viewed as a suitable bilinear map W1×W2 −→W0), such that for any pair
(W, I) with W a V -module and I an intertwining map of type

(
W

W1W2

)
, there is a

unique module homomorphism η :W0 −→W such that I = η ◦ I0. This universal
property of course characterizes (W0, I0) up to canonical isomorphism. Moreover,
it is obvious that the tensor product in fact exists, and may be constructed as the
vector-space tensor product W1 ⊗W2 equipped with the diagonal action of the Lie
algebra, together with the identity map from W1 ⊗ W2 to itself (or equivalently,
the canonical bilinear map W1 × W2 −→ W1 ⊗ W2). We shall denote the tensor
product (W0, I0) of W1 and W2 by (W1 �W2,�), where it is understood that the
image of w(1) ⊗w(2) under our canonical intertwining map � is w(1) �w(2). Thus
W1 �W2 =W1 ⊗W2, and under our identifications, �= 1W1⊗W2 .

Remark 1.1 This classical explicit construction of course shows that the tensor
product functor exists for the category of modules for a Lie algebra. For vertex al-
gebras, it will be relatively straightforward to define the appropriate tensor product
functor(s) (see [71–74]), but it will be a nontrivial matter to construct this functor
(or more precisely, these functors) and thereby prove that the (appropriate) tensor
product of modules for a (suitable) vertex algebra exists. The reason why we have
formulated the notion of tensor product module for a Lie algebra in the way that
we just did is that this formulation motivates the correct notion of tensor product
functor(s) in the vertex algebra case.

Remark 1.2 Using this explicit construction of the tensor product functor and our
notation w(1) � w(2) for the tensor product of elements, the standard natural asso-
ciativity isomorphisms among tensor products of triples of Lie algebra modules are
expressed as follows: Since w(1) �w(2) =w(1) ⊗w(2), we have

(w(1) �w(2))�w(3) = (w(1) ⊗w(2))⊗w(3),
w(1) � (w(2) �w(3)) = w(1) ⊗ (w(2) ⊗w(3))

for w(i) ∈Wi , i = 1,2,3, and so the canonical identification betweenw(1)⊗ (w(2)⊗
w(3)) and (w(1) ⊗w(2))⊗w(3) gives the standard natural isomorphism

(W1 �W2)�W3 →W1 � (W2 �W3)

(w(1) �w(2))�w(3) �→ w(1) � (w(2) �w(3)).
(1.2)

This collection of natural associativity isomorphisms of course satisfies the classical
coherence conditions for associativity isomorphisms among multiple nested tensor
product modules—the conditions that say that in nested tensor products involving
any number of tensor factors, the placement of parentheses (as in (1.2), the case of
three tensor factors) is immaterial; we shall discuss coherence conditions in detail
later. Now, as was discovered in [53], it turns out that maps analogous to (1.2) can
also be constructed in the vertex algebra case, giving natural associativity isomor-
phisms among triples of modules for a (suitable) vertex operator algebra. However,
in the vertex algebra case, the elements “w(1) � w(2),” which indeed exist (under
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suitable conditions) and are constructed in the theory, lie in a suitable “completion”
of the tensor product module rather than in the module itself. Correspondingly, it is
a nontrivial matter to construct the triple-tensor-product elements on the two sides
of (1.2); in fact, one needs to prove certain convergence, under suitable additional
conditions. Even after the triple-tensor-product elements are constructed (in suitable
completions of the triple-tensor-product modules), it is a delicate matter to construct
the appropriate natural associativity maps, analogous to (1.2), to prove that they are
well defined, and to prove that they are isomorphisms. In the present work, we shall
generalize these matters (in a self-contained way) from the context of [53] to a more
general one. In the rest of this section, for triples of modules for a Lie algebra, we
shall now describe a construction of the natural associativity isomorphisms that will
seem roundabout and indirect, but this is the method of construction of these isomor-
phisms that will give us the correct “road map” for the corresponding construction
(and theorems) in the vertex algebra case, as in [72–74] and [53].

A significant feature of the constructions in the earlier works (and in the present
work) is that the tensor product of modules W1 and W2 for a vertex operator algebra
V is the contragredient module of a certain V -module that is typically a proper sub-
space of (W1 ⊗W2)

∗, the dual space of the vector-space tensor product of W1 and
W2. In particular, our treatment, which follows, of the Lie algebra case will use con-
tragredient modules, and we will therefore restrict our attention to finite-dimensional
modules for our Lie algebra. It will be important that the double-contragredient
module of a Lie algebra module is naturally isomorphic to the original module. We
shall sometimes denote the contragredient module of a V -module W by W ′, so that
W ′′ =W . (We recall that for a module W for a Lie algebra V , the corresponding
contragredient module W ′ consists of the dual vector space W ∗ equipped with the
action of V given by: (v ·w∗)(w)=−w∗(v ·w) for v ∈ V , w∗ ∈W ∗, w ∈W .)

Let us, then, now restrict our attention to finite-dimensional modules for our
Lie algebra V . The dual space (W1 ⊗ W2)

∗ carries the structure of the classical
contragredient module of the tensor product module. Given any intertwining map of
type

(
W3

W1W2

)
, using the natural linear isomorphism

Hom(W1 ⊗W2,W3) ˜−→Hom
(
W ∗

3 , (W1 ⊗W2)
∗) (1.3)

we have a corresponding linear map in Hom(W ∗
3 , (W1 ⊗W2)

∗), and this must be a
map of V -modules. In the vertex algebra case, given V -modulesW1 andW2, it turns
out that with a suitable analogous setup, the union in the vector space (W1 ⊗W2)

∗
of the ranges of all such V -module maps, as W3 and the intertwining map vary (and
with W ∗

3 replaced by the contragredient module W ′
3), is the correct candidate for

the contragredient module of the tensor product module W1 �W2. Of course, in the
Lie algebra situation, this union is (W1 ⊗W2)

∗ itself (since we are allowed to take
W3 =W1⊗W2 and the intertwining map to be the canonical map), but in the vertex
algebra case, this union is typically much smaller than (W1 ⊗W2)

∗. In the vertex
algebra case, we will use the notation W1 � W2 to designate this union, and if the
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tensor product module W1 �W2 in fact exists, then

W1 �W2 = (W1 � W2)
′, (1.4)

W1 � W2 = (W1 �W2)
′. (1.5)

Thus in the Lie algebra case we will write

W1 � W2 = (W1 ⊗W2)
∗, (1.6)

and (1.4) and (1.5) hold. (In the Lie algebra case we prefer to write (W1 ⊗W2)
∗

rather than (W1 ⊗W2)
′, because in the vertex algebra case, W1 ⊗W2 is typically

not a V -module, and so we will not be allowed to write (W1 ⊗W2)
′ in the vertex

algebra case.)
The subspace W1 � W2 of (W1 ⊗ W2)

∗ was in fact further described in the
following terms in [72] and [74], in the vertex algebra case: For any map in
Hom(W ′

3, (W1 ⊗W2)
∗) corresponding to an intertwining map according to (1.3),

the image of any w′(3) ∈W ′
3 under this map satisfies certain subtle conditions, called

the “compatibility condition” and the “local grading restriction condition”; these
conditions are not “visible” in the Lie algebra case. These conditions in fact pre-
cisely describe the proper subspace W1 � W2 of (W1 ⊗W2)

∗. We will discuss such
conditions further in Sect. 1.4 and in the body of this work. As we shall explain, this
idea of describing elements in certain dual spaces was also used in constructing the
natural associativity isomorphisms between triples of modules for a vertex operator
algebra in [53].

In order to give the reader a guide to the vertex algebra case, we now describe
the analogue for the Lie algebra case of this construction of the associativity iso-
morphisms. To construct the associativity isomorphism from (W1 �W2) �W3 to
W1 � (W2 �W3), it is equivalent (by duality) to give a suitable isomorphism from
W1 � (W2 �W3) to (W1 �W2) � W3 (recall (1.4), (1.5)).

Rather than directly constructing an isomorphism between these two V -modules,
it turns out that we want to embed both of them, separately, into the single space
(W1 ⊗W2 ⊗W3)

∗. Note that (W1 ⊗W2 ⊗W3)
∗ is naturally a V -module, via the

contragredient of the diagonal action, that is,

(
π(v)λ

)
(w(1) ⊗w(2) ⊗w(3)) = −λ

(
π1(v)w(1) ⊗w(2) ⊗w(3)

)

− λ(w(1) ⊗ π2(v)w(2) ⊗w(3)
)

− λ(w(1) ⊗w(2) ⊗ π3(v)w(3)
)
, (1.7)

for v ∈ V andw(i) ∈Wi , i = 1,2,3, where π1, π2, π3 are the module actions of V on
W1, W2 and W3, respectively. A concept related to this is the notion of intertwining
map from W1⊗W2⊗W3 to a module W4, a natural analogue of (1.1), defined to be
a linear map

F :W1 ⊗W2 ⊗W3 −→W4 (1.8)
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such that

π4(v)F (w(1) ⊗w(2) ⊗w(3)) = F
(
π1(v)w(1) ⊗w(2) ⊗w(3)

)

+ F (
w(1) ⊗ π2(v)w(2) ⊗w(3)

)

+ F (
w(1) ⊗w(2) ⊗ π(3)(v)w3

)
, (1.9)

with the obvious notation. The relation between (1.7) and (1.9) comes directly from
the natural linear isomorphism

Hom(W1 ⊗W2 ⊗W3,W4) ˜−→Hom
(
W ∗

4 , (W1 ⊗W2 ⊗W3)
∗); (1.10)

given F , we have

W ∗
4 −→ (W1 ⊗W2 ⊗W3)

∗

ν �→ ν ◦ F. (1.11)

Under this natural linear isomorphism, the intertwining maps correspond precisely
to the V -module maps from W ∗

4 to (W1 ⊗W2 ⊗W3)
∗. In the situation for vertex

algebras, as was the case for tensor products of two rather than three modules, there
are analogues of all of the notions and comments discussed in this paragraph except
that we will not put V -module structure onto the vector space W1 ⊗W2 ⊗W3; as
we have emphasized, we will instead base the theory on intertwining maps.

Two important ways of constructing maps of the type (1.8) are as follows: For
modules W1, W2, W3, W4, M1 and intertwining maps I1 and I2 of types

(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively, by definition the composition I1 ◦ (1W1⊗ I2) is an intertwining

map from W1 ⊗ W2 ⊗ W3 to W4. Analogously, for intertwining maps I 1, I 2 of
types

(
W4

M2W3

)
and

(
M2
W1W2

)
, respectively, with M2 also a module, the composition

I 1 ◦ (I 2⊗ 1W3) is an intertwining map from W1⊗W2⊗W3 to W4. Hence we have
two V -module homomorphisms

W ∗
4 −→ (W1 ⊗W2 ⊗W3)

∗

ν �→ ν ◦ F1,
(1.12)

where F1 is the intertwining map I1 ◦ (1W1 ⊗ I2); and

W ∗
4 −→ (W1 ⊗W2 ⊗W3)

∗

ν �→ ν ◦ F2,
(1.13)

where F2 is the intertwining map I 1 ◦ (I 2 ◦ 1W3).
The special cases in which the modules W4 are two iterated tensor product mod-

ules and the “intermediate” modulesM1 andM2 are two tensor product modules are
particularly interesting: When W4 =W1 � (W2 �W3) and M1 =W2 �W3, and I1

and I2 are the corresponding canonical intertwining maps, (1.12) gives the natural
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V -module homomorphism

W1 � (W2 �W3) −→ (W1 ⊗W2 ⊗W3)
∗

ν �→ (
w(1) ⊗w(2) ⊗w(3) �→ ν

(
w(1) � (w(2) �w(3))

)); (1.14)

whenW4 = (W1 �W2)�W3 andM2 =W1 �W2, and I 1 and I 2 are the correspond-
ing canonical intertwining maps, (1.13) gives the natural V -module homomorphism

(W1 �W2) � W3 −→ (W1 ⊗W2 ⊗W3)
∗

ν �→ (
w(1) ⊗w(2) ⊗w(3) �→ ν

(
(w(1) �w(2))�w(3)

))
.

(1.15)

Clearly, in our Lie algebra case, both of the maps (1.14) and (1.15) are isomor-
phisms, since they both in fact amount to the identity map on (W1 ⊗W2 ⊗W3)

∗.
However, in the vertex algebra case the analogues of these two maps are only in-
jective homomorphisms, and typically not isomorphisms. (Recall the analogous
situation, mentioned above, for double rather than triple tensor products.) These
two maps enable us to identify both W1 � (W2 �W3) and (W1 �W2) � W3 with
subspaces of (W1 ⊗W2 ⊗ W3)

∗. In the vertex algebra case we will have certain
“compatibility conditions” and “local grading restriction conditions” on elements
of (W1⊗W2⊗W3)

∗ to describe each of the two subspaces. In either the Lie algebra
or the vertex algebra case, the construction of our desired natural associativity iso-
morphism between the two modules (W1 �W2)�W3 and W1 � (W2 �W3) follows
from showing that the ranges of homomorphisms (1.14) and (1.15) are equal to each
other, which is of course obvious in the Lie algebra case since both (1.14) and (1.15)
are isomorphisms to (W1⊗W2⊗W3)

∗. It turns out that, under this associativity iso-
morphism, (1.2) holds in both the Lie algebra case and the vertex algebra case; in
the Lie algebra case, this is obvious because all the maps are the “tautological” ones.

Now we give the reader a preview of how, in the vertex algebra case, these com-
patibility and local grading restriction conditions on elements of (W1⊗W2⊗W3)

∗
will arise. As we have mentioned, in the Lie algebra case, an intertwining map from
W1⊗W2⊗W3 to W4 corresponds to a module map from W ∗

4 to (W1⊗W2⊗W3)
∗.

As was discussed in [53], for the vertex operator algebra analogue, the image of any
w′(4) ∈W ′

4 under such an analogous map satisfies certain “compatibility” and “local
grading restriction” conditions, and so these conditions must be satisfied by those
elements of (W1 ⊗W2 ⊗W3)

∗ lying in the ranges of the vertex-operator-algebra
analogues of either of the maps (1.14) and (1.15) (or the maps (1.12) and (1.13)).

Besides these two conditions, satisfied by the elements of the ranges of the maps
of both types (1.14) and (1.15), the elements of the ranges of the analogues of the
homomorphisms (1.14) and (1.15) have their own separate properties. First note that
any λ ∈ (W1 ⊗W2 ⊗W3)

∗ induces the two maps

μ
(1)
λ :W1 → (W2 ⊗W3)

∗

w(1) �→ λ(w(1) ⊗ ·⊗ ·)
(1.16)
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and

μ
(2)
λ :W3 → (W1 ⊗W2)

∗

w(3) �→ λ(· ⊗ · ⊗w(3)).
(1.17)

In the vertex operator algebra analogue [53], if λ lies in the range of (1.14), then it
must satisfy the condition that the elements μ(1)λ (w(1)) all lie in a suitable comple-
tion of the subspaceW2 �W3 of (W2⊗W3)

∗, and if λ lies in the range of (1.15), then
it must satisfy the condition that the elements μ(2)λ (w(3)) all lie in a suitable com-
pletion of the subspace W1 �W2 of (W1⊗W2)

∗. (Of course in the Lie algebra case,
these statements are tautological.) In [53], these important conditions, that μ(1)λ (W1)

lies in a suitable completion of W2 � W3 and that μ(2)λ (W3) lies in a suitable com-
pletion of W1 � W2, are understood as “local grading restriction conditions” with
respect to the two different ways of composing intertwining maps.

In the construction of our desired natural associativity isomorphism, since we
want the ranges of (1.14) and (1.15) to be the same submodule of (W1⊗W2⊗W3)

∗,
the ranges of both (1.14) and (1.15) should satisfy both of these conditions. This
amounts to a certain “expansion condition” in the vertex algebra case. When all
these conditions are satisfied, it can in fact be proved [53] that the associativity iso-
morphism does indeed exist and that in addition, the “associativity of intertwining
maps” holds; that is, the “product” of two suitable intertwining maps can be written,
in a certain sense, as the “iterate” of two suitable intertwining maps, and conversely.
This equality of products with iterates, highly nontrivial in the vertex algebra case,
amounts in the Lie algebra case to the easy statement that in the notation above, any
intertwining map of the form I1 ◦ (1W1 ⊗ I2) can also be written as an intertwining
map of the form I 1 ◦ (I 2⊗ 1W3), for a suitable “intermediate module” M2 and suit-
able intertwining maps I 1 and I 2, and conversely. The reason why this statement is
easy in the Lie algebra case is that in fact any intertwining map F of the type (1.8)
can be “factored” in either of these two ways; for example, to write F in the form
I1 ◦ (1W1 ⊗ I2), take M1 to be W2 ⊗W3, I2 to be the canonical (identity) map and
I1 to be F itself (with the appropriate identifications having been made).

We are now ready to discuss the vertex algebra case.

1.4 The Vertex Algebra Case

In this section, which should be carefully compared with the previous one, we shall
lay out our “road map” of the constructions of the tensor product functors and the
associativity isomorphisms for a suitable class of vertex algebras, considerably gen-
eralizing, but also following the ideas of, the corresponding theory developed in
[72–74] and [53] for vertex operator algebras. Without yet specifying the precise
class of vertex algebras that we shall be using in the body of this work, except to
say that our vertex algebras will be Z-graded and our modules will be C-graded at
first and then R-graded for the more substantial results, we now discuss the vertex
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algebra case. What follows applies to both the theory of [53, 72–74] and the present
new logarithmic theory. In Remark 1.7 below, we comment on the substantial new
features of the logarithmic generality.

In the vertex algebra case, the concept of intertwining map involves the moduli
space of Riemann spheres with one negatively oriented puncture and two positively
oriented punctures and with local coordinates around each puncture; the details of
the geometric structures needed in this theory are presented in [52] and [56]. For
each element of this moduli space there is a notion of intertwining map adapted
to the particular element. Let z be a nonzero complex number and let P(z) be the
Riemann sphere Ĉ with one negatively oriented puncture at ∞ and two positively
oriented punctures at z and 0, with local coordinates 1/w, w − z and w at these
three punctures, respectively.

Let V be a vertex algebra (on which appropriate assumptions, including the ex-
istence of a suitable Z-grading, will be made later), and let Y(·, x) be the vertex
operator map defining the algebra structure (see Sect. 2 below for a brief summary
of basic notions and notation, including the formal delta function). Let W1, W2 and
W3 be modules for V , and let Y1(·, x), Y2(·, x) and Y3(·, x) be the corresponding
vertex operator maps. (The cases in which some of the Wi are V itself, and some
of the Yi are, correspondingly, Y , are important, but the most interesting cases are
those where all three modules are different from V .) A “P(z)-intertwining map of
type

(
W3

W1W2

)
” is a linear map

I :W1 ⊗W2 −→W 3, (1.18)

where W 3 is a certain completion of W3, related to its C-grading, such that

x−1
0 δ

(
x1 − z
x0

)
Y3(v, x1)I (w(1) ⊗w(2))

= z−1δ

(
x1 − x0

z

)
I
(
Y1(v, x0)w(1) ⊗w(2)

)

+ x−1
0 δ

(
z− x1

−x0

)
I
(
w(1) ⊗ Y2(v, x1)w(2)

)
(1.19)

for v ∈ V , w(1) ∈W1, w(2) ∈W2, where x0, x1 and x2 are commuting independent
formal variables. This notion is motivated in detail in [71, 72] and [74]; we shall
recall the motivation below.

Remark 1.3 In this theory, it is crucial to distinguish between formal variables and
complex variables. Thus we shall use the following notational convention: Through-
out this work, unless we specify otherwise, the symbols x, x0, x1, x2, . . . , y, y0, y1,

y2, . . . will denote commuting independent formal variables, and by contrast, the
symbols z, z0, z1, z2, . . . will denote complex numbers in specified domains, not for-
mal variables.
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Remark 1.4 Recall from [38] the definition of the notion of intertwining operator
Y(·, x) in the theory of vertex (operator) algebras. Given (W1, Y1), (W2, Y2) and
(W3, Y3) as above, an intertwining operator of type

(
W3

W1W2

)
can be viewed as a cer-

tain type of linear map Y(·, x)· from W1 ⊗W2 to the vector space of formal series
in x of the form

∑
n∈Cw(n)xn, where the coefficients w(n) lie in W3, and where

we are allowing arbitrary complex powers of x, suitably “truncated from below” in
this sum. The main property of an intertwining operator is the following “Jacobi
identity”:

x−1
0 δ

(
x1 − x2

x0

)
Y3(v, x1)Y(w(1), x2)w(2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y(w(1), x2)Y2(v, x1)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
Y

(
Y1(v, x0)w(1), x2

)
w(2) (1.20)

for v ∈ V , w(1) ∈W1 and w(2) ∈W2. (When all three modules Wi are V itself and
all four operators Yi and Y are Y itself, (1.20) becomes the usual Jacobi identity
in the definition of the notion of vertex algebra. When W1 is V , W2 = W3 and
Y = Y2 = Y3, (1.20) becomes the usual Jacobi identity in the definition of the notion
of V -module.) The point is that by “substituting z for x2” in (1.20), we obtain (1.19),
where we make the identification

I (w(1) ⊗w(2))= Y(w(1), z)w(2); (1.21)

the resulting complex powers of the complex number z are made precise by a choice
of branch of the log function. The nonzero complex number z in the notion of P(z)-
intertwining map thus “comes from” the substitution of z for x2 in the Jacobi identity
in the definition of the notion of intertwining operator. In fact, this correspondence
(given a choice of branch of log) actually defines an isomorphism between the space
of P(z)-intertwining maps and the space of intertwining operators of the same type
([72, 74]); this will be discussed.

There is a natural linear injection

Hom(W1 ⊗W2,W 3)−→Hom
(
W ′

3, (W1 ⊗W2)
∗), (1.22)

where here and below we denote byW ′ the (suitably defined) contragredient module
of a V -module W ; we have W ′′ =W . Under this injection, a map I ∈ Hom(W1 ⊗
W2,W 3) amounts to a map I ′ :W ′

3 −→ (W1 ⊗W2)
∗:

w′(3) �→
〈
w′(3), I (· ⊗ ·)

〉
, (1.23)

where 〈·, ·〉 denotes the natural pairing between the contragredient of a module and
its completion. If I is a P(z)-intertwining map, then as in the Lie algebra case (see
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above), where such a map is a module map, the map (1.23) intertwines two natural
V -actions on W ′

3 and (W1 ⊗ W2)
∗. We will see that in the present (vertex alge-

bra) case, (W1 ⊗W2)
∗ is typically not a V -module. The images of all the elements

w′(3) ∈W ′
3 under this map satisfy certain conditions, called the “P(z)-compatibility

condition” and the “P(z)-local grading restriction condition,” as formulated in [72]
and [74]; we shall be discussing these.

Given a category of V -modules and two modules W1 and W2 in this category, as
in the Lie algebra case, the “P(z)-tensor product ofW1 andW2” is then defined to be
a pair (W0, I0), where W0 is a module in the category and I0 is a P(z)-intertwining
map of type

(
W0

W1W2

)
, such that for any pair (W, I) with W a module in the cate-

gory and I a P(z)-intertwining map of type
(

W
W1W2

)
, there is a unique morphism

η :W0 −→W such that I = η̄ ◦ I0; here and throughout this work we denote by
χ̄ the linear map naturally extending a suitable linear map χ from a graded space
to its appropriate completion. This universal property characterizes (W0, I0) up to
canonical isomorphism, if it exists. We will denote the P(z)-tensor product of W1

and W2, if it exists, by (W1 �P(z) W2,�P(z)), and we will denote the image of
w(1) ⊗w(2) under �P(z) by w(1) �P(z) w(2), which is an element of W1 �P(z) W2,
not of W1 �P(z) W2.

From this definition and the natural map (1.22), we will see that if the P(z)-
tensor product of W1 and W2 exists, then its contragredient module can be realized
as the union of ranges of all maps of the form (1.23) as W ′

3 and I vary. Even if the
P(z)-tensor product of W1 and W2 does not exist, we denote this union (which is
always a subspace stable under a natural action of V ) by W1 �P(z) W2. If the tensor
product does exist, then

W1 �P(z) W2 = (W1 �P(z) W2)
′, (1.24)

W1 �P(z) W2 = (W1 �P(z) W2)
′; (1.25)

examining (1.24) will show the reader why the notation � was chosen in the earlier
papers (�= �

′!). Several critical facts about W1 �P(z) W2 were proved in [72, 73]
and [74], notably, W1 �P(z) W2 is equal to the subspace of (W1 ⊗W2)

∗ consisting
of all the elements satisfying the P(z)-compatibility condition and the P(z)-local
grading restriction condition, and in particular, this subspace is V -stable; and the
condition that W1 �P(z) W2 is a module is equivalent to the existence of the P(z)-
tensor product W1 �P(z) W2. All these facts will be proved.

In order to construct vertex tensor category structure, we need to construct ap-
propriate natural associativity isomorphisms. Assuming the existence of the relevant
tensor products, we in fact need to construct an appropriate natural isomorphism
from (W1 �P(z1−z2) W2)�P(z2) W3 to W1 �P(z1) (W2 �P(z2) W3) for complex num-
bers z1, z2 satisfying |z1|> |z2|> |z1− z2|> 0. Note that we are using two distinct
nonzero complex numbers, and that certain inequalities hold. This situation cor-
responds to the fact that a Riemann sphere with one negatively oriented puncture
and three positively oriented punctures can be seen in two different ways as the
“product” of two Riemann spheres each with one negatively oriented puncture and
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two positively oriented punctures; the detailed geometric motivation is presented in
[52, 56, 71] and [53].

To construct this natural isomorphism, we first consider compositions of cer-
tain intertwining maps. As we have mentioned, a P(z)-intertwining map I of type(
W3

W1W2

)
maps intoW 3 rather thanW3. Thus the existence of compositions of suitable

intertwining maps always entails certain convergence. In particular, the existence of
the composition w(1) �P(z1) (w(2) �P(z2) w(3)) when |z1| > |z2| > 0 and the exis-
tence of the composition (w(1)�P(z1−z2)w(2))�P(z2)w(3) when |z2|> |z1−z2|> 0,
for general elements w(i) of Wi , i = 1,2,3, requires the proof of certain conver-
gence conditions. These conditions will be discussed in detail.

Let us now assume these convergence conditions and let z1, z2 satisfy |z1| >
|z2| > |z1 − z2| > 0. To construct the desired associativity isomorphism from
(W1 �P(z1−z2) W2) �P(z2) W3 to W1 �P(z1) (W2 �P(z2) W3), it is equivalent (by
duality) to give a suitable natural isomorphism from W1 �P(z1) (W2 �P(z2) W3) to
(W1 �P(z1−z2) W2) �P(z2) W3. As we mentioned in the previous section, instead of
constructing this isomorphism directly, we shall embed both of these spaces, sepa-
rately, into the single space (W1 ⊗W2 ⊗W3)

∗.
We will see that (W1 ⊗W2 ⊗W3)

∗ carries a natural V -action analogous to the
contragredient of the diagonal action in the Lie algebra case (recall the similar action
of V on (W1⊗W2)

∗ mentioned above). Also, for four V -modules W1, W2, W3 and
W4, we have a canonical notion of “P(z1, z2)-intertwining map fromW1⊗W2⊗W3
to W 4” given by a vertex-algebraic analogue of (1.9); for this notion, we need only
that z1 and z2 are nonzero and distinct. The relation between these two concepts
comes from the natural linear injection

Hom(W1 ⊗W2 ⊗W3,W 4) −→ Hom
(
W ′

4, (W1 ⊗W2 ⊗W3)
∗)

F �→ F ′,
(1.26)

where F ′ :W ′
4 −→ (W1 ⊗W2 ⊗W3)

∗ is given by

ν �→ ν ◦ F, (1.27)

which is indeed well defined. Under this natural map, the P(z1, z2)-intertwining
maps correspond precisely to the maps fromW ′

4 to (W1⊗W2⊗W3)
∗ that intertwine

the two natural V -actions on W ′
4 and (W1 ⊗W2 ⊗W3)

∗.
Now for modules W1, W2, W3, W4, M1, and a P(z1)-intertwining map I1 and

a P(z2)-intertwining map I2 of types
(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively, it turns out

that the composition I1 ◦ (1W1⊗ I2) exists and is a P(z1, z2)-intertwining map when
|z1| > |z2| > 0. Analogously, for a P(z2)-intertwining map I 1 and a P(z1 − z2)-
intertwining map I 2 of types

(
W4

M2W3

)
and

(
M2
W1W2

)
, respectively, where M2 is also

a module, the composition I 1 ◦ (I 2 ⊗ 1W3) is a P(z1, z2)-intertwining map when
|z2|> |z1 − z2|> 0. Hence we have two maps intertwining the V -actions:

W ′
4 −→ (W1 ⊗W2 ⊗W3)

∗

ν �→ ν ◦ F1,
(1.28)
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where F1 is the intertwining map I1 ◦ (1W1 ⊗ I2), and

W ′
4 −→ (W1 ⊗W2 ⊗W3)

∗

ν �→ ν ◦ F2,
(1.29)

where F2 is the intertwining map I 1 ◦ (I 2 ◦ 1W3).
It is important to note that we can express these compositions I1 ◦ (1W1 ⊗ I2) and

I 1 ◦ (I 2 ⊗ 1W3) in terms of intertwining operators, as discussed in Remark 1.4. Let
Y1, Y2, Y1 and Y2 be the intertwining operators corresponding to I1, I2, I 1 and I 2,
respectively. Then the compositions I1 ◦ (1W1 ⊗ I2) and I 1 ◦ (I 2⊗ 1W3) correspond
to the “product” Y1(·, x1)Y2(·, x2)· and “iterate” Y1(Y2(·, x0)·, x2)· of intertwining
operators, respectively, and we make the “substitutions” (in the sense of Remark 1.4)
x1 �→ z1, x2 �→ z2 and x0 �→ z1 − z2 in order to express the two compositions of
intertwining maps as the “product” Y1(·, z1)Y2(·, z2)· and “iterate” Y1(Y2(·, z1 −
z2)·, z2)· of intertwining maps, respectively. (These products and iterates involve a
branch of the log function and also certain convergence.)

Just as in the Lie algebra case, the special cases in which the modules W4 are
two iterated tensor product modules and the “intermediate” modules M1 and M2
are two tensor product modules are particularly interesting: When W4 =W1 �P(z1)

(W2 �P(z2)W3) andM1 =W2 �P(z2)W3, and I1 and I2 are the corresponding canon-
ical intertwining maps, (1.28) gives the natural V -homomorphism

W1 �P(z1) (W2 �P(z2) W3) −→ (W1 ⊗W2 ⊗W3)
∗

ν �→ (
w(1) ⊗w(2) ⊗w(3) �→ (1.30)

ν
(
w(1) �P(z1) (w(2) �P(z2) w(3))

));

when W4 = (W1 �P(z1−z2) W2)�P(z2) W3 and M2 =W1 �P(z1−z2) W2, and I 1 and
I 2 are the corresponding canonical intertwining maps, (1.29) gives the natural V -
homomorphism

(W1 �P(z1−z2) W2) �P(z2) W3 −→ (W1 ⊗W2 ⊗W3)
∗

ν �→ (
w(1) ⊗w(2) ⊗w(3) �→ (1.31)

ν
(
(w(1) �P(z1−z2) w(2))�P(z2) w(3)

))
.

It turns out that both of these maps are injections, as in [53] (as we shall
prove), so that we are embedding the spaces W1 �P(z1) (W2 �P(z2) W3) and
(W1 �P(z1−z2) W2)�P(z2) W3 into the space (W1⊗W2⊗W3)

∗. Following the ideas
in [53], we shall give a precise description of the ranges of these two maps, and
under suitable conditions, prove that the two ranges are the same; this will establish
the associativity isomorphism.

More precisely, as in [53], we prove that for any P(z1, z2)-intertwining map F ,
the image of any ν ∈ W ′

4 under F ′ (recall (1.27)) satisfies certain conditions that
we call the “P(z1, z2)-compatibility condition” and the “P(z1, z2)-local grading
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restriction condition.” Hence, as special cases, the elements of (W1 ⊗W2 ⊗W3)
∗

in the ranges of either of the maps (1.28) or (1.29), and in particular, of (1.30) or
(1.31), satisfy these conditions.

In addition, any λ ∈ (W1 ⊗W2 ⊗W3)
∗ induces two maps μ(1)λ and μ(2)λ as in

(1.16) and (1.17). We will see that any element λ of the range of (1.28), and in
particular, of (1.30), must satisfy the condition that the elements μ(1)λ (w(1)) all lie,
roughly speaking, in a suitable completion of the subspace W2 �P(z2) W3 of (W2⊗
W3)

∗, and any element λ of the range of (1.29), and in particular, of (1.31), must
satisfy the condition that the elements μ(2)λ (w(3)) all lie, again roughly speaking,
in a suitable completion of the subspace W1 �P(z1−z2) W2 of (W1 ⊗W2)

∗. These
conditions will be called the “P (1)(z)-local grading restriction condition” and the
“P (2)(z)-local grading restriction condition,” respectively.

It turns out that the construction of the desired natural associativity isomorphism
follows from showing that the ranges of both of (1.30) and (1.31) satisfy both of
these conditions. This amounts to a certain “expansion condition” on our module
category. When this expansion condition and a suitable convergence condition are
satisfied, we show that the desired associativity isomorphisms do exist, and that
in addition, the associativity of intertwining maps holds. That is, let z1 and z2 be
complex numbers satisfying the inequalities |z1| > |z2| > |z1 − z2| > 0. Then for
any P(z1)-intertwining map I1 and P(z2)-intertwining map I2 of types

(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively, there is a suitable module M2, and a P(z2)-intertwining map

I 1 and a P(z1 − z2)-intertwining map I 2 of types
(
W4

M2W3

)
and

(
M2
W1W2

)
, respectively,

such that
〈
w′(4), I1

(
w(1) ⊗ I2(w(2) ⊗w(3))

)〉= 〈
w′(4), I

1(I 2(w(1) ⊗w(2))⊗w(3)
)〉

(1.32)

for w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′(4) ∈W ′
4; and conversely, given I 1 and

I 2 as indicated, there exist a suitable module M1 and maps I1 and I2 with the in-
dicated properties. In terms of intertwining operators (recall the comments above),
the equality (1.32) reads

〈
w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)

〉∣∣
x1=z1,x2=z2

= 〈
w′(4),Y1(Y2(w(1), x0)w(2), x2

)
w(3)

〉∣∣
x0=z1−z2,x2=z2

, (1.33)

where Y1, Y2, Y1 and Y2 are the intertwining operators corresponding to I1, I2,
I 1 and I 2, respectively. (As we have been mentioning, the substitution of complex
numbers for formal variables involves a branch of the log function and also certain
convergence.) In this sense, the associativity asserts that the “product” of two suit-
able intertwining maps can be written as the “iterate” of two suitable intertwining
maps, and conversely.

From this construction of the natural associativity isomorphisms we will see,
by analogy with (1.2), that (w(1) �P(z1−z2) w(2))�P(z2) w(3) is mapped naturally to
w(1)�P(z1) (w(2)�P(z2) w(3)) under the natural extension of the corresponding asso-
ciativity isomorphism (these elements in general lying in the algebraic completions
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of the corresponding tensor product modules). In fact, this property

(w(1) �P(z1−z2) w(2))�P(z2) w(3) �→w(1) �P(z1) (w(2) �P(z2) w(3)) (1.34)

forw(1) ∈W1,w(2) ∈W2 andw(3) ∈W3 characterizes the associativity isomorphism

(W1 �P(z1−z2) W2)�P(z2) W3→W1 �P(z1) (W2 �P(z2) W3) (1.35)

(cf. (1.2)). The coherence property of the associativity isomorphisms will follow
from this fact. We will of course have mutually inverse associativity isomorphisms.

Remark 1.5 Note that (1.33) can be written as

Y1(w(1), z1)Y2(w(2), z2)= Y1(Y2(w(1), z1 − z2)w(2), z2
)
, (1.36)

with the appearance of the complex numbers being understood as substitutions in
the sense mentioned above, and with the “generic” vectors w(3) and w′(4) being im-
plicit. This (rigorous) equation amounts to the “operator product expansion” in the
physics literature on conformal field theory; indeed, in our language, if we expand
the right-hand side of (1.36) in powers of z1 − z2, we find that a product of inter-
twining maps is expressed as an expansion in powers of z1 − z2, with coefficients
that are again intertwining maps, of the form Y1(w, z2). When all three modules are
the vertex algebra itself, and all the intertwining operators are the canonical vertex
operator Y(·, x) itself, this “operator product expansion” follows easily from the Ja-
cobi identity. But for intertwining operators in general, it is a deep matter to prove
the operator product expansion, that is, to prove the assertions involving (1.32) and
(1.33) above. This was proved in [53] in the finitely reductive setting and is consid-
erably generalized in the present work to the logarithmic setting.

Remark 1.6 The constructions of the tensor product modules and of the associativ-
ity isomorphisms previewed above for suitably general vertex algebras follow those
in [72–74] and [53]. Alternative constructions are certainly possible. For example,
an alternative construction of the tensor product modules was given in [100]. How-
ever, no matter what construction is used for the tensor product modules of suitably
general vertex algebras, one cannot avoid constructing structures and proving results
equivalent to what is carried out in this work. The constructions in this work of the
tensor product functors and of the natural associativity isomorphisms are crucial in
the deeper part of the theory of vertex tensor categories.

Remark 1.7 We have outlined the construction of the tensor product functors and
the associativity isomorphisms without getting into the technical details. On the
other hand, though the general ideas of the constructions are the same for both the
semisimple theory developed in [72–74] and [53] and the nonsemisimple logarith-
mic theory carried out in the present work, many of the proofs of the results in the
present work involve substantial new ideas and techniques, making the nonsemisim-
ple logarithmic theory vastly more difficult technically than the semisimple theory.
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First, we have had to further develop formal calculus beyond what had been devel-
oped in [37, 38, 53, 72–74, 99] and many other works. We have had to study new
kinds of combinations of formal delta function expressions in several formal and
complex variables. Second, we have extended formal calculus to include logarithms
of formal variables. In formal calculus, logarithms of formal variables are in fact
additional independent formal variables. We develop our “logarithmic formal cal-
culus” in a much more general setting than what we need for the main results in
this work. In particular, we at first allow the formal series in a formal variable and
its logarithm to involve infinitely many arbitrary complex powers of the logarithm.
This study of logarithmic formal calculus has surprising connections with various
classes of combinatorial identities and has been extended and exploited by Robinson
[129–131]. Third, to construct the natural associativity isomorphisms and other data
for the tensor categories and to prove the coherence property, it is necessary to use
complex analysis. We wanted to carry out our theory under the most general natural
sets of assumptions that would indeed yield a theory. This required us to work with
series involving arbitrary real powers of the complex variables, with the powers not
even being lower bounded. We have in fact extended a number of classical results in
complex analysis to results that can be applied to such series. In particular, we have
had to prove many results that allow us to switch orders of infinite sums, by either
proving the multiconvergence of the corresponding multisums or by using Taylor
expansion for analytic functions. Fourth, since our theory also involves logarithms
of complex variables, we have also had to extend those same classical results in
complex analysis to results that can be applied still further to series involving log-
arithms of the complex variables. In particular, we prove that when the powers of
the logarithm of a complex variable are bounded above in a series involving arbi-
trary real powers of the variable and nonnegative integral powers of its logarithm,
the convergence of suitable iterated sums implies absolute convergence of the corre-
sponding double sums. We also prove what we call the “unique expansion property”
for the set R× {0, . . . ,N} (see Proposition 7.8), which says that the coefficients of
an absolutely convergent series of the form just indicated are determined uniquely
by its sum. One important difference from the logarithmic formal calculus is that
when we use complex analysis, it is necessary for the powers of the logarithms to be
bounded from above, essentially because a complex variable z can also be expressed
as the sum of the series z=∑

n∈N
(log z)n

n! . Fifth, we have had to combine our results
on formal calculus, on logarithmic formal calculus, and on complex analysis for se-
ries with both arbitrary real powers and also logarithms to prove our main results on
the construction of the tensor category structures. In many proofs, we encounter ex-
pressions involving both formal variables and complex variables, and thus we have
had to develop new and delicate methods exploiting both the formal and complex
analysis methods that we have just mentioned. The proofs, which are not short (and
cannot be), accomplish the necessary interchanges of order of summations.

Remark 1.8 The operator product expansion and resulting braided tensor category
structure constructed by the theory in [53, 72–74] were originally structures whose
existence was conjectured: It was in their important study of conformal field theory
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that Moore and Seiberg [111, 112] first discovered a set of polynomial equations
from a suitable axiom system for a “rational conformal field theory.” Inspired by
a comment of Witten, they observed an analogy between the theory of these poly-
nomial equations and the theory of tensor categories. The structures given by these
Moore-Seiberg equations were called “modular tensor categories” by I. Frenkel.
However, in the work of Moore and Seiberg, as they commented, neither tensor
product structure nor other related structures were either formulated or constructed
mathematically. Later, Turaev formulated a precise notion of modular tensor cate-
gory in [136] and [137] and gave examples of such tensor categories from repre-
sentations of quantum groups at roots of unity, based on results obtained by many
people on quantum groups and their representations, especially those in the pioneer-
ing work [127] and [128] by Reshetikhin and Turaev on the construction of knot and
3-manifold invariants from representations of quantum groups. On the other hand,
on the “rational conformal field theory” side, a modular tensor category structure in
this sense on certain module categories for affine Lie algebras, and much more gen-
erally, on certain module categories for “chiral algebras” associated with rational
conformal field theories, was then believed to exist by both physicists and mathe-
maticians, but such structure was not in fact constructed at that time. Moore and
Seiberg observed the analogy mentioned above based on the assumption of the ex-
istence of a suitable tensor product functor (including a tensor product module) and
derived their polynomial equations based on the assumption of the existence of a
suitable operator product expansion for chiral vertex operators, which is essentially
equivalent to assuming the associativity of intertwining maps, as we have expressed
it above. As we have discussed, the desired tensor product modules and functors
were constructed under suitable conditions in the series of papers [72, 73] and [74],
and in [53] the appropriate natural associativity isomorphisms among tensor prod-
ucts of triples of modules were constructed, and it was shown that this is equivalent
to the desired associativity of intertwining maps (and thus the existence of a suit-
able operator product expansion). In particular, this work [72–74] and [53] served
to construct the desired braided tensor category structure in the generality of suit-
able vertex operator algebras, including those associated with affine Lie algebras
and the Virasoro algebra as a very special case; see [75] and [54], respectively. (For
a discussion of the remaining parts of the modular tensor category structure in this
generality, see below and [66].) The results in these papers will be generalized in
this work. In the special case of affine Lie algebras and also in the special case of
Virasoro-algebraic structures, using the work of Tsuchiya-Ueno-Yamada [135] and
Beilinson-Feigin-Mazur [13] combined with a formulation of braided tensor cate-
gory structure by Deligne [18], one can obtain the braided tensor category structure
discussed above (but not the modular tensor category structure).

1.5 Some Recent Applications and Related Literature

We begin with a discussion concerning the “rational” case, with semisimple mod-
ule categories. We also refer the reader to the recent review by Fuchs, Runkel and
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Schweigert [41] on rational conformal field theory, which also in fact briefly dis-
cusses nonrational conformal field theories, including in particular logarithmic con-
formal field theories.

After the important work [111] and [112] of Moore and Seiberg, it was widely
believed that the category of modules for a suitable vertex operator algebra must
have a structure of braided tensor category satisfying additional properties related
to the modular invariance of the vertex operator algebra. As is mentioned in Remark
1.8, for a suitable vertex operator algebra, the work [72–74] and [53] constructed
a structure of braided tensor category on the category of modules for the vertex
operator algebra; see also [54] and [75]. On the other hand, the precise and concep-
tual formulation of the notion of modular tensor category by Turaev [136] led to a
mathematical conjecture that the category of modules for a suitable vertex operator
algebra can be endowed in a natural way with modular tensor category structure in
this sense. It was in 2005 that this conjecture was finally proved by the first author
in [64] (see also the announcement [61] and the exposition [62]). The hardest part
of the proof of this conjecture was the proof of the rigidity property of the braided
tensor category constructed in [72–74] and [53].

Even in the case of a vertex operator algebra associated to an affine Lie algebra
or the Virasoro algebra, there was no proof of rigidity for the braided tensor cat-
egory of modules in the literature, before the proof discovered in [64]. The works
of Tsuchiya-Ueno-Yamada [135] and Beilinson-Feigin-Mazur [13] can be used to
construct a structure of braided tensor category on the category of modules for such
a vertex operator algebra, but neither the rigidity property nor the other main ax-
iom for modular tensor category structure, called the nondegeneracy property, of
these braided tensor categories has ever been proved using the results or methods
in those works. Under the assumption that the braided tensor category structure
on the category of integrable highest weight (standard) modules of a fixed positive
integral level for an affine Lie algebra was already known to have the rigidity prop-
erty, Finkelberg [28, 29] showed that this braided tensor category structure could
be recovered by transporting to this category the corresponding rigid braided ten-
sor category structure previously constructed for negative levels by Kazhdan and
Lusztig [91–95]. But since the rigidity was an assumption needed in the proof, the
work [28, 29] did not actually serve to give a construction of the braided tensor
category structure at positive integral level. The book [12] asserted that one had a
construction of the structure of modular tensor category on the category of modules
for a vertex operator algebra associated to an affine Lie algebra at positive integral
level, and while a construction of the structure of braided tensor category was in-
deed given, there was no proof of the rigidity property, so that even in the cases of
affine Lie algebras and the Virasoro algebra, the construction of the corresponding
modular tensor category structures was still an unsolved open problem before 2005.

Under the assumption of the rigidity for positive integral level, the work [28, 29]
of Finkelberg combined with the work [91–95] of Kazhdan and Lusztig established
the important equivalence between the braided tensor category of a semisimple sub-
quotient of the category of modules for a quantum group at a root of unity and the
braided tensor category of integrable highest weight modules of a positive integral
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level for an affine Lie algebra. The proof of the rigidity of the braided tensor cate-
gory of integrable highest weight modules of a positive integral level for an affine
Lie algebra, as a special case in [64], based on the braided tensor category structure
constructed in [75], as a special case in [72–74] and [53], thus in fact provided the
completion of the proof of the equivalence theorem that was the goal in [28] and
[29] above. As we have mentioned, the only known proof of this rigidity requires
the work [72–74] and [53], and in particular, in the affine Lie algebra case, uses the
work [75].

The proof of the rigidity in [64] is highly nontrivial. The reason why the rigidity
was so hard is that one needed to prove the Verlinde conjecture for suitable vertex
operator algebras in order to prove the rigidity, and the Verlinde conjecture requires
the consideration of genus-one as opposed to genus-zero conformal field theory. The
nondegeneracy property of the modular tensor category also follows from the truth
of the Verlinde conjecture. The Verlinde conjecture was discovered by E. Verlinde
[138] in 1987, and as was demonstrated by Moore and Seiberg [111, 112] in 1988,
the validity of the conjecture follows from their axiom system for a rational confor-
mal field theory. However, the construction of rational conformal field theories is
much harder than the construction of modular tensor categories, and this in turn re-
quires the proof of the Verlinde conjecture without the assumption of the axioms for
a rational conformal field theory. The Verlinde conjecture for suitable vertex opera-
tor algebras was proved in 2004 by the first author in [63] (without the assumption
of the axioms for a rational conformal field theory), and its proof in turn depended
on the aspects of the theory of intertwining operators (the genus-zero theory) de-
veloped in [59] and on the aspects of the theory of q-traces of products or iterates
of intertwining operators and their modular invariance (the genus-one theory) de-
veloped in [60]. (These works in turn depended on [72–74] and [53].) The modular
invariance theorem proved in the pioneering work [143, 144] of Zhu actually turned
out to be only a very special case of the stronger necessary result proved in [60],
and was far from enough for the purpose of establishing either the required rigid-
ity property or the required nondegeneracy property of the modular tensor category
structure. The paper [60] established the most general modular invariance result in
the semisimple case and also constructed all genus-one correlation functions of the
corresponding chiral rational conformal field theories. After Zhu’s modular invari-
ance was proved in 1990, the modular invariance for products or iterates of more
than one intertwining operator was an open problem for a long time. In the case
of products or iterates of at most one intertwining operator and any number of ver-
tex operators for modules, a straightforward generalization of Zhu’s result using his
same method gives the modular invariance (see [107]). But for products or iterates
of more than one intertwining operator, Zhu’s method is not sufficient because the
commutator formula that he used to derive his recurrence formula in his proof has
no generalization for intertwining operators. This was one of the main reasons that
for about 15 years after 1990, there had been not much progress toward the proof of
the rigidity and nondegeneracy properties. In [60], this difficulty was overcome by
means of a proof that q-traces of products or iterates of intertwining operators sat-
isfy modular invariant differential equations with regular singular points; the need
for a recurrence formula was thus bypassed.
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We have been discussing the case of rational conformal field theories. The present
work includes as a special case a complete treatment of the work [72–74] and [53],
with much stronger results added as well; this work is required for the results that
we have just discussed. The main theme of the present work being the logarithmic
generalization of this theory, allowing categories of modules that are not completely
reducible, we would now like to comment on some recent applications and related
literature in the (much greater) logarithmic generality, and also, in this generality
we are in addition able to replace vertex operator algebras by much more general
vertex algebras equipped with a suitable additional grading by an abelian group.
(Allowing logarithmic structures and allowing vertex algebras with a grading by an
abelian group are “unrelated” generalizations of the context of [72–74] and [53]; in
the present work we are able to carry out both generalizations simultaneously.)

The triplet W-algebras W(1,p), mentioned above, are a class of vertex op-

erator algebras of central charge 1 − 6 (p−1)2

p
which in recent years have at-

tracted a lot of attention from physicists and mathematicians. Introduced by
Kausch [89], they have been studied extensively by Flohr [30, 31], Gaberdiel-
Kausch [43, 45], Kausch [90], Fuchs-Hwang-Semikhatov-Tipunin [40], Abe [1],
Feigin-Gaı̆nutdinov-Semikhatov-Tipunin [26, 27], Carqueville-Flohr [17], Flohr-
Gaberdiel [32], Fuchs [39], Adamović-Milas [6, 9, 11], Flohr-Grabow-Koehn [34],
Flohr-Knuth [33], Gaberdiel-Runkel [46, 47], Gaı̆nutdinov-Tipunin [49], Pearce-
Rasmussen-Ruelle [116, 117], Nagatomo-Tsuchiya [114] and Rasmussen [122].
A triplet W-algebra V =∐

n∈Z V(n) satisfies the positive energy condition (V(0) =
C1 and V(n) = 0 for n < 0) and the C2-cofiniteness condition (the quotient space
V/C2(V ) is finite dimensional, where C2(V ) is the subspace of V spanned by the
elements of the form u−2v for u,v ∈ V ). The C2-cofiniteness condition was proved
by Abe [1] in the simplest p = 2 case and by Carqueville-Flohr [17] and Adamović-
Milas [6] in the general case.

In [65], the first author proved that for a vertex operator algebra V satisfying the
positive energy condition and theC2-cofiniteness condition, the category of grading-
restricted generalized V -modules satisfies the assumptions needed to invoke the the-
ory carried out in the present work. The present work, combined with [65] (for prov-
ing the assumptions of the present work), thus establishes the logarithmic operator
product expansion and constructs the logarithmic tensor category theory for any ver-
tex operator algebra satisfying the positive energy condition and the C2-cofiniteness
condition. For example, the logarithmic tensor products used heavily in the papers
[108, 109] and [110] of Miyamoto are in fact constructed in the present work to-
gether with [65]. In particular, for a triplet W-algebra V discussed above, the cat-
egory of grading-restricted generalized V -modules indeed has the natural braided
tensor category structure constructed in the present work. Many of the assertions
involving a logarithmic operator product expansion and a logarithmic tensor cate-
gory theory in the works on triplet W-algebras mentioned above are mathematically
formulated and established in the present work together with the paper [65], so that
now, they do not have to be taken as unproved assumptions in those works.

Based on the results of Feigin-Gaı̆nutdinov-Semikhatov-Tipunin [26] and of
Fuchs-Hwang-Semikhatov-Tipunin [40], Feigin, Gaı̆nutdinov, Semikhatov and
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Tipunin conjectured [27] an equivalence between the braided finite tensor category
of grading-restricted generalized modules for a triplet W-algebra and the braided
finite tensor category of suitable modules for a restricted quantum group. Their for-
mulation of the conjecture also includes the statement that the categories of grading-
restricted generalized modules for the triplet W-algebras considered in their paper
are indeed braided tensor categories. Assuming the existence of the braided ten-
sor category structure on the triplet W-algebra with p = 2, Feigin, Gaı̆nutdinov,
Semikhatov and Tipunin gave a proof of their conjecture. However, in the case
p �= 2, Kondo and Saito [97] showed that the tensor category of modules for the cor-
responding restricted quantum group is not braided. Thus, the conjecture in the case
p �= 2 cannot be true as it is stated, although the equivalence between the abelian
categories was proved in [114] for all p. It is believed that the correct formulation of
the conjecture and the proof will be possible only after the conformal-field-theoretic
aspects of the representations of triplet W-algebras are studied thoroughly. As we
mentioned above, the present work, the paper [65] and the papers [1, 17] and [6]
provide a proof of the assumption in their conjecture that the categories of grading-
restricted generalized modules for the triplet W-algebras are indeed braided tensor
categories. We expect that further studies of the tensor-categorical structures and
conformal-field-theoretic properties for triplet W-algebras will provide a correct
formulation and proof of suitable equivalence between categories of suitable mod-
ules for triplet W-algebras and for restricted quantum groups.

In [67], the first author introduced a notion of generalized twisted module as-
sociated to a general automorphism of a vertex operator algebra, including an au-
tomorphism of infinite order. The first author in [67] also gave a construction of
such generalized twisted modules associated to the automorphisms obtained by ex-
ponentiating weight 1 elements of the vertex operator algebra. If the automorphism
of the vertex operator algebra does not act semisimply, the twisted vertex operators
for these generalized twisted modules must involve the logarithm of a formal or
complex variable, and we need additional C/Z- or C-gradings on these generalized
twisted modules. As was noticed by Milas, the triplet W-algebras are fixed-point
subalgebras of suitable vertex operator algebras constructed from a one-dimensional
lattice under an automorphism obtained by exponentiating a weight 1 element. In
particular, some logarithmic intertwining operators constructed in [7] are in fact
twisted vertex operators. Thus the paper [67] provided an orbifold approach to the
representation theory of triplet W-algebras. (This orbifold point of view is one of
the analogues of the orbifold point of view for vertex operator algebras introduced
in [37].) Since the automorphisms involved indeed do not act on the vertex operator
algebra semisimply, the twisted vertex operators for the generalized twisted modules
associated to these automorphisms must involve the logarithm of the variables, and
we also need additional C/Z- or C-gradings on these generalized twisted modules.
Here C/Z or C are instances of the additional grading abelian group in the present
work. Thus we need the general framework and results in the present work, includ-
ing both the logarithmic generality and also the additional abelian-group gradings,
for the study of these generalized twisted modules.

Many of the results on the representation theory of triplet W-algebras have
also been generalized to the more general case of W(p, q)-algebras [25] of cen-
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tral charge 1 − 6 (p−q)
2

pq
, q > p > 0 coprime (see for example [5, 10, 48, 119–

121, 123, 125, 134] and [140]), and to N = 1 triplet vertex operator superalge-
bras (see [8, 9] and [11]). Results have also been obtained for the vertex opera-
tor subalgebras of the algebras W(p, q) generated by the Virasoro algebra (see
[16, 24, 44, 103, 115, 124, 126] and [50]). The C2-cofiniteness of the W(2, q)-
algebras has been proved by Adamović and Milas in [10]. Thus using the results
obtained in [67], the theory developed in the present work applies to these W(2, q)-
algebras, yielding braided tensor categories. TheN = 1 triplet vertex operator super-
algebras introduced by Adamović and Milas in [8] are also proved by these authors
in [9] to be C2-cofinite. As was mentioned above in Sect. 1.2, the theory developed
in this work also applies to vertex superalgebras. The same remarks apply to the re-
sults in [67]. Thus the theory developed in the present work applies to these N = 1
triplet vertex operator superalgebras, producing the corresponding braided tensor
categories.

Finally, we would like to emphasize that it is interesting that the methods de-
veloped and used in the present work, even in the special case of categories of
modules for an affine Lie algebra at negative levels, are very different from those
developed and used by Kazhdan and Lusztig in [91–95], and are much more gen-
eral. The methods used in [91–95], closely related to algebraic geometry, depended
heavily on the Knizhnik-Zamolodchikov equations. In the present work, we use
and develop the general theory of vertex (operator) algebras (and generalizations),
requiring both formal calculus theory and complex analysis, and we do not use al-
gebraic geometry. Also, in the present work and in the work [141] and [142], which
verified the assumptions needed for the application of the present theory, although
we need to show that products of intertwining operators satisfy certain differen-
tial equations with regular singular points, no explicit form of the equations, such
as the explicit form of the Knizhnik-Zamolodchikov equations, is needed. In fact,
because for a general vertex (operator) algebra satisfying those assumptions in the
present work or in [65] no explicit form of the differential equations such as the form
of the Knizhnik-Zamolodchikov equations exists, it was crucial that in the work
[53, 59, 72–74], the present work and [65], we have developed methods that are in-
dependent of the explicit form of the differential equations. Another interesting dif-
ference between the present general theory and this work of Kazhdan and Lusztig is
that logarithmic structures (necessarily) pervade our theory, starting from the vertex-
algebraic foundations, while the logarithmic nature of solutions of the Knizhnik-
Zamolodchikov equations involved in [91–95] did not have to be emphasized there.

1.6 Main Results of the Present Work

In this section, we state the main results of the present work, numbered as in the
main text. The reader is referred to the relevant sections for definitions, notations
and details.

Let A be an abelian group and Ã an abelian group containing A as a subgroup.
Let V be a strongly A-graded Möbius or conformal vertex algebra, as defined in
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Sect. 2. Let C be a full subcategory of the category Msg of strongly Ã-graded
(ordinary) V -modules or the category GMsg of strongly Ã-graded generalized
V -modules, closed under the contragredient functor and under taking finite direct
sums; see Sect. 2 and Assumptions 4.1 and 5.30.

In Sect. 4, the notions of P(z)- and Q(z)-tensor product functor are defined in
terms of P(z)- and Q(z)-intertwining maps and P(z)- and Q(z)-products; inter-
twining maps are related to logarithmic intertwining operators, defined and studied
in Sect. 3. The symbols P(z) and Q(z) refer to the moduli space elements described
in Remarks 4.3 and 4.37, respectively. In Sect. 5, we give a construction of the P(z)-
tensor product of two objects of C, when this structure exists. For W1,W2 ∈ obC,
define the subset

W1 �P(z) W2 ⊂ (W1 ⊗W2)
∗

of (W1 ⊗W2)
∗ to be the union, or equivalently, the sum, of the images

I ′
(
W ′)⊂ (W1 ⊗W2)

∗

as (W ; I ) ranges through all the P(z)-products ofW1 andW2 withW ∈ obC, where
I ′ is a map corresponding naturally to the P(z)-intertwining map I and where W ′
is the contragredient (generalized) module of W .

The following two results give the construction of the P(z)-tensor product:

Proposition 5.37 Let W1,W2 ∈ obC. If (W1 �P(z) W2, Y
′
P(z)) is an object of C

(where Y ′P(z) is the natural action of V ), denote by (W1 �P(z) W2, YP (z)) its contra-
gredient (generalized) module:

W1 �P(z) W2 = (W1 �P(z) W2)
′.

Then the P(z)-tensor product of W1 and W2 in C exists and is

(
W1 �P(z) W2, YP (z); i′

)
,

where i is the natural inclusion from W1 �P(z) W2 to (W1 ⊗W2)
∗. Conversely, let

us assume that C is closed under images. If the P(z)-tensor product of W1 and W2

in C exists, then (W1 �P(z) W2, Y
′
P(z)) is an object of C.

For

λ ∈ (W1 ⊗W2)
∗,

let Wλ be the smallest doubly graded subspace of ((W1 ⊗W2)
∗)(Ã)[C] (the direct sum

of the homogeneous subspaces with respect to the gradings both by conformal gen-
eralized weights and by Ã) containing λ and stable under the component operators
of the operators Y ′P(z)(v, x) for v ∈ V , m ∈ Z, and under the operators L′P(z)(−1),
L′P(z)(0) and L′P(z)(1) (to handle the Möbius but non-conformal case). Let
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COMPP(z)
(
(W1 ⊗W2)

∗),

LGR[C];P(z)
(
(W1 ⊗W2)

∗)

and

LGR(C);P(z)
(
(W1 ⊗W2)

∗)

be the spaces of elements of (W1 ⊗W2)
∗ satisfying the P(z)-compatibility condi-

tion, the P(z)-local grading restriction condition and the L(0)-semisimple P(z)-
local grading restriction condition, respectively, as defined in Sect. 4; the subscript
(C) refers to the semisimplicity of the action of L(0) in this case, so that generalized
weights are weights.

Theorem 5.50 Suppose that for every element

λ ∈ COMPP(z)
(
(W1 ⊗W2)

∗)∩ LGR[C];P(z)
(
(W1 ⊗W2)

∗)

the space Wλ (which is a (strongly-graded) generalized module) is a generalized
submodule of some object of C included in (W1 ⊗ W2)

∗ (this holds vacuously if
C = GMsg). Then

W1 �P(z) W2 = COMPP(z)
(
(W1 ⊗W2)

∗)∩ LGR[C];P(z)
(
(W1 ⊗W2)

∗).

Suppose that C is a category of strongly-graded V -modules (that is, C ⊂Msg) and
that for every element

λ ∈ COMPP(z)
(
(W1 ⊗W2)

∗)∩ LGR(C);P(z)
(
(W1 ⊗W2)

∗)

the space Wλ (which is a (strongly-graded) V -module) is a submodule of some
object of C included in (W1 ⊗W2)

∗ (which holds vacuously if C =Msg). Then

W1 �P(z) W2 = COMPP(z)
(
(W1 ⊗W2)

∗)∩ LGR(C);P(z)
(
(W1 ⊗W2)

∗).

The hard parts of the proof of Theorem 5.50 are given in Sect. 6.
We also give an analogous construction ofQ(z)-tensor products in these sections.
For the construction of the natural associativity isomorphism between suitable

pairs of triple tensor product functors, we assume that for any object of C, all the
(generalized) weights are real numbers and in addition there exists K ∈ Z+ such
that

(
L(0)−L(0)s

)K = 0

on the module, L(0)s being the semisimple part of L(0) (the latter condition holding
vacuously when C is in Msg); see Assumption 7.11.

The main hard parts of the construction of the associativity isomorphisms are
presented in Sect. 9, after necessary preparation in Sect. 8. To discuss these results,
we need the important P (1)(z)- and P (2)(z)-local grading restriction conditions on

λ ∈ (W1 ⊗W2 ⊗W3)
∗



Logarithmic Tensor Category Theory 205

(where W1, W2, and W3 are objects of C) and their L(0)-semisimple versions. Here
we state the (two-part) P (2)(z)-local grading restriction condition, the other condi-
tions being analogous:

The P (2)(z)-Local Grading Restriction Condition

(a) The P (2)(z)-grading condition: For any w(3) ∈W3, there exists a formal series
∑

n∈R λ
(2)
n with

λ(2)n ∈
∐

β∈Ã

(
(W1 ⊗W2)

∗)(β)
[n]

for n ∈ R, an open neighborhood of z′ = 0, and N ∈ N such that for w(1) ∈W1
and w(2) ∈W2, the series

∑

n∈R

(
e
z′L′

P (z)
(0)
λ(2)n

)
(w(1) ⊗w(2))

has the following properties:

(i) It can be written as the iterated series

∑

n∈R
enz

′
((

N∑

i=0

(z′)i

i!
(
L′P(z)(0)− n

)i
λ(2)n

)

(w(1) ⊗w(2))
)

.

(ii) It is absolutely convergent for z′ ∈C in the neighborhood of z′ = 0 above.
(iii) It is absolutely convergent to μ(2)λ,w(3) (w(1) ⊗w(2)) when z′ = 0:

∑

n∈R
λ(2)n (w(1) ⊗w(2))= μ(2)λ,w(3) (w(1) ⊗w(2))= λ(w(1) ⊗w(2) ⊗w(3))

(the last equality being the definition of μ(2)λ,w(3) ).

(b) For any w(3) ∈ W3, let W(2)
λ,w(3)

be the smallest doubly graded subspace of

((W1 ⊗W2)
∗)(Ã)[R] containing all the terms λ(2)n in the formal series in (a) and

stable under the component operators of the operators Y ′P(z)(v, x) for v ∈ V ,

m ∈ Z, and under the operatorsL′P(z)(−1),L′P(z)(0) andL′P(z)(1). ThenW(2)
λ,w(3)

has the properties

dim
(
W
(2)
λ,w(3)

)(β)
[n] <∞,

(
W
(2)
λ,w(3)

)(β)
[n+k] = 0 for k ∈ Z sufficiently negative

for any n ∈ R and β ∈ Ã, where the subscripts denote the R-grading by

L′P(z)(0)-(generalized) eigenvalues and the superscripts denote the Ã-grading.
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The following result gives, among other things, the deep fact that when λ is
obtained from a suitable product of intertwining maps, the elements λ(2)n for n ∈ R

in the assumed P (2)(z)-local grading restriction condition for suitable z ∈C
× satisfy

the P(z)-compatibility condition:

Theorem 9.17 Assume that the convergence condition for intertwining maps in C
(see Sect. 7) holds and that

|z1|> |z2|> |z1 − z2|> 0.

LetW1,W2,W3,W4,M1 andM2 be objects of C and let I1, I2, I 1 and I 2 be P(z1)-,

P(z2)-, P(z2)- and P(z1 − z2)-intertwining maps of types
(
W4

W1M1

)
,
(
M1
W2W3

)
,
(
W4

M2W3

)

and
(
M2
W1W2

)
, respectively. Let w′(4) ∈W ′

4.

1. Suppose that (I1 ◦ (1W1 ⊗ I2))
′(w′(4)) satisfies Part (a) of the P (2)(z1− z2)-local

grading restriction condition, that is, the P (2)(z1− z2)-grading condition (or the
L(0)-semisimple P (2)(z1 − z2)-grading condition when C is in Msg). For any

w(3) ∈W3, let
∑

n∈R λ
(2)
n be a series weakly absolutely convergent to

μ
(2)
(I1◦(1W1⊗I2))

′(w′
(4)),w(3)

∈ (W1 ⊗W2)
∗

as indicated in the P (2)(z1 − z2)-grading condition (or the L(0)-semisimple
P (2)(z1 − z2)-grading condition), and suppose in addition that the elements
λ
(2)
n ∈ (W1 ⊗ W2)

∗, n ∈ R, satisfy the P(z1 − z2)-lower truncation condition
(Part (a) of the P(z1 − z2)-compatibility condition in Sect. 5). Then each λ(2)n
satisfies the (full) P(z1− z2)-compatibility condition. Moreover, the correspond-
ing space

W
(2)
(I1◦(1W1⊗I2))

′(w′
(4)),w(3)

⊂ (W1 ⊗W2)
∗,

equipped with the vertex operator map given by Y ′
P(z1−z2)

and the operators
L′
P(z1−z2)

(j) for j = −1,0,1, is a doubly-graded generalized V -module, and
when C is in Msg , a doubly-graded V -module. In particular, if (I1 ◦ (1W1 ⊗
I2))

′(w′(4)) satisfies the full P (2)(z1− z2)-local grading restriction condition (or

the L(0)-semisimple P (2)(z1− z2)-local grading restriction condition when C is
in Msg), then W(2)

(I1◦(1W1⊗I2))
′(w′

(4)),w(3)
is an object of GMsg (or Msg when C is

in Msg); in this case, the assumption that each λ(2)n satisfies the P(z1−z2)-lower
truncation condition is redundant.

2. Analogously, suppose that (I 1 ◦ (I 2 ⊗ 1W3))
′(w′(4)) satisfies Part (a) of the

P (1)(z2)-local grading restriction condition, that is, the P (1)(z2)-grading con-
dition (or the L(0)-semisimple P (1)(z2)-grading condition when C is in Msg).
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For any w(1) ∈W1, let
∑

n∈R λ
(1)
n be a series weakly absolutely convergent to

μ
(1)
(I 1◦(I 2⊗1W3 ))

′(w′
(4)),w(1)

∈ (W2 ⊗W3)
∗

as indicated in the P (1)(z2)-grading condition (or the L(0)-semisimple P (1)(z2)-
grading condition), and suppose in addition that the elements λ(1)n ∈ (W2⊗W3)

∗,
n ∈ R, satisfy the P(z2)-lower truncation condition (Part (a) of the P(z2)-
compatibility condition). Then each λ(1)n satisfies the (full) P(z2)-compatibility
condition. Moreover, the corresponding space

W
(1)
(I 1◦(I 2⊗1W3 ))

′(w′
(4)),w(1)

⊂ (W2 ⊗W3)
∗,

equipped with the vertex operator map given by Y ′P(z2)
and the operators

L′P(z2)
(j) for j =−1,0,1, is a doubly-graded generalized V -module, and when

C is in Msg , a doubly-graded V -module. In particular, if (I 1 ◦(I 2⊗1W3))
′(w′

(4))

satisfies the full P (1)(z2)-local grading restriction condition (or the L(0)-
semisimple P (1)(z2)-local grading restriction condition when C is in Msg), then

W
(1)
(I 1◦(I 2⊗1W3 ))

′(w′
(4)),w(1)

is an object of GMsg (or Msg when C is in Msg); in

this case, the assumption that each λ(1)n satisfies the P(z2)-lower truncation con-
dition is redundant.

The following result, based heavily on the previous theorem, establishes the as-
sociativity of intertwining maps:

Theorem 9.23 Assume that C is closed under images, that the convergence condi-
tion for intertwining maps in C holds and that

|z1|> |z2|> |z1 − z2|> 0.

LetW1,W2,W3,W4,M1 andM2 be objects of C. Assume also thatW1 �P(z1−z2)W2
and W2 �P(z2) W3 exist in C.

1. Let I1 and I2 be P(z1)- and P(z2)-intertwining maps of types
(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively. Suppose that for each w′(4) ∈W ′

4,

λ= (
I1 ◦ (1W1 ⊗ I2)

)′(
w′(4)

) ∈ (W1 ⊗W2 ⊗W3)
∗

satisfies the P (2)(z1 − z2)-local grading restriction condition (or the L(0)-
semisimple P (2)(z1− z2)-local grading restriction condition when C is in Msg).

For w′(4) ∈W ′
4 and w(3) ∈W3, let

∑
n∈R λ

(2)
n be the (unique) series weakly abso-

lutely convergent to μ(2)λ,w(3) as indicated in the P (2)(z1 − z2)-grading condition

(or the L(0)-semisimple P (2)(z1− z2)-grading condition). Suppose also that for
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each n ∈ R, w′(4) ∈W ′
4 and w(3) ∈W3, the generalized V -submodule of W(2)

λ,w(3)

generated by λ(2)n is a generalized V -submodule of some object of C included in
(W1 ⊗W2)

∗. Then the product

I1 ◦ (1W1 ⊗ I2)

can be expressed as an iterate, and in fact, there exists a unique P(z2)-
intertwining map I 1 of type

(
W4

W1�P (z1−z2)W2 W3

)
such that

〈
w′(4), I1

(
w(1) ⊗ I2(w(2) ⊗w(3))

)〉= 〈
w′(4), I

1((w(1) �P(z1−z2) w(2))⊗w(3)
)〉

for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′
(4) ∈W ′

4.

2. Analogously, let I 1 and I 2 be P(z2)- and P(z1− z2)-intertwining maps of types(
W4

M2W3

)
and

(
M2
W1W2

)
, respectively. Suppose that for each w′(4) ∈W ′

4,

λ= (
I 1 ◦ (

I 2 ⊗ 1W3

))′(
w′(4)

) ∈ (W1 ⊗W2 ⊗W3)
∗

satisfies the P (1)(z2)-local grading restriction condition (or the L(0)-semisimple
P (1)(z2)-local grading restriction condition when C is in Msg). For w′

(4) ∈W ′
4

and w(1) ∈W1, let
∑

n∈R λ
(1)
n be the (unique) series weakly absolutely conver-

gent to μ
(1)
λ,w(1)

as indicated in the P (1)(z2)-grading condition (or the L(0)-

semisimple P (1)(z2)-grading condition). Suppose also that for each n ∈ R,

w′(4) ∈W ′
4 and w(1) ∈W1, the generalized V -submodule of W(1)

λ,w(1)
generated by

λ
(1)
n is a generalized V -submodule of some object of C included in (W2 ⊗W3)

∗.
Then the iterate

I 1 ◦ (
I 2 ⊗ 1W3

)

can be expressed as a product, and in fact, there exists a unique P(z1)-
intertwining map I1 of type

(
W4

W1 W2�P (z2)W3

)
such that

〈
w′(4), I

1(I 2(w(1) ⊗w(2))⊗w(3)
)〉= 〈

w′(4), I1
(
w(1) ⊗ (w(2) �P(z2) w(3))

)〉

for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′(4) ∈W ′
4.

The hard part of the proof of this theorem is the proof of Lemma 9.22. This as-
sociativity of intertwining maps immediately gives the following important associa-
tivity of logarithmic intertwining operators, which is a strong version of logarithmic
operator product expansion:

Corollary 9.24 Assume that C is closed under images, that the convergence condi-
tion for intertwining maps in C holds and that

|z1|> |z2|> |z1 − z2|> 0.
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LetW1,W2,W3,W4,M1 andM2 be objects of C. Assume also thatW1 �P(z1−z2)W2
and W2 �P(z2) W3 exist in C.

1. Let Y1 and Y2 be logarithmic intertwining operators (ordinary intertwining op-
erators in the case that C is in Msg) of types

(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively.

Suppose that for each w′(4) ∈W ′
4, the element λ ∈ (W1 ⊗W2 ⊗W3)

∗ given by

λ(w(1) ⊗w(2) ⊗w(3))=
〈
w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)

〉∣∣
x1=z1,x2=z2

for w(1) ∈W1, w(2) ∈W2 and w(3) ∈W3 satisfies the P (2)(z1 − z2)-local grad-
ing restriction condition (or the L(0)-semisimple P (2)(z1 − z2)-local grad-
ing restriction condition when C is in Msg). For w′

(4) ∈ W ′
4 and w(3) ∈ W3,

let
∑

n∈R λ
(2)
n be the (unique) series weakly absolutely convergent to μ

(2)
λ,w(3)

as indicated in the P (2)(z1 − z2)-grading condition (or the L(0)-semisimple
P (2)(z1 − z2)-grading condition). Suppose also that for each n ∈ R, w′(4) ∈W ′

4

and w(3) ∈W3, the generalized V -submodule of W(2)
λ,w(3)

generated by λ(2)n is a
generalized V -submodule of some object of C included in (W1 ⊗ W2)

∗. Then
there exists a unique logarithmic intertwining operator (a unique ordinary in-
tertwining operator in the case that C is in Msg) Y1 of type

( W4
W1�P (z1−z2)W2 W3

)

such that

〈
w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)

〉∣∣
x1=z1,x2=z2

= 〈
w′(4),Y1(Y�P (z1−z2),0(w(1), x0)w(2), x2

)
w(3)

〉∣∣
x0=z1−z2,x2=z2

for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′
(4) ∈W ′

4. In particular, the prod-
uct of the logarithmic intertwining operators (ordinary intertwining operators
in the case that C is in Msg) Y1 and Y2 evaluated at z1 and z2, respectively,
can be expressed as an iterate (with the intermediate generalized V -module
W1 �P(z1−z2) W2) of logarithmic intertwining operators (ordinary intertwining
operators in the case that C is in Msg) evaluated at z2 and z1 − z2.

2. Analogously, let Y1 and Y2 be logarithmic intertwining operators (ordinary in-
tertwining operators in the case that C is in Msg) of types

(
W4

M2W3

)
and

(
M2
W1W2

)
,

respectively. Suppose that for each w′
(4) ∈W ′

4, the element λ ∈ (W1⊗W2⊗W3)
∗

given by

λ(w(1) ⊗w(2) ⊗w(3))=
〈
w′(4),Y1(Y2(w(1), x0)w(2), x2

)
w(3)

〉∣∣
x0=z1−z2,x2=z2

satisfies the P (1)(z2)-local grading restriction condition (or the L(0)-semisimple
P (1)(z2)-local grading restriction condition when C is in Msg). For w′

(4) ∈W ′
4

and w(1) ∈W1, let
∑

n∈R λ
(1)
n be the (unique) series weakly absolutely conver-

gent to μ
(1)
λ,w(1)

as indicated in the P (1)(z2)-grading condition (or the L(0)-

semisimple P (1)(z2)-grading condition). Suppose also that for each n ∈ R,
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w′(4) ∈W ′
4 and w(1) ∈W1, the generalized V -submodule of W(1)

λ,w(1)
generated by

λ
(1)
n is a generalized V -submodule of some object of C included in (W2 ⊗W3)

∗.
Then there exists a unique logarithmic intertwining operator (a unique ordinary
intertwining operator in the case that C is in Msg) Y1 of type

( W4
W1 W2�P (z2)W3

)

such that

〈
w′(4),Y1(Y2(w(1), x0)w(2), x2

)
w(3)

〉∣∣
x0=z1−z2,x2=z2

= 〈
w′(4),Y1(w(1), x1)Y�P (z2),0

(w(2), x2)w(3)
〉∣∣
x1=z1,x2=z2

for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′(4) ∈W ′
4. In particular, the iterate

of the logarithmic intertwining operators (ordinary intertwining operators in the
case that C is in Msg) Y1 and Y2 evaluated at z2 and z1−z2, respectively, can be
expressed as a product (with the intermediate generalized V -module W2 �P(z2)

W3) of logarithmic intertwining operators (ordinary intertwining operators in
the case that C is in Msg) evaluated at z1 and z2.

In Sect. 10, we construct the associativity isomorphisms, under certain assump-
tions: In addition to the assumptions above, we assume that C is closed under images
and that for some z ∈ C

× (and hence for every z ∈ C
×), C is closed under P(z)-

tensor products; see Assumption 10.1. Besides the convergence condition (Sect. 7),
at the end of Sect. 9 we introduce what we call the “expansion condition,” which,
roughly speaking, states that an element of (W1⊗W2⊗W3)

∗ obtained from a prod-
uct or an iterate of intertwining maps satisfies the P (2)(z)- or P (1)(z)-local grading
restriction condition, respectively, for suitable z ∈C

×, along with certain other “mi-
nor” conditions. Then we have:

Theorem 10.3 Assume that the convergence condition and the expansion condition
for intertwining maps in C both hold. Let z1, z2 be complex numbers satisfying

|z1|> |z2|> |z1 − z2|> 0

(so that in particular z1 �= 0, z2 �= 0 and z1 �= z2). Then there exists a unique natural
isomorphism

AP(z1−z2),P (z2)
P (z1),P (z2)

:�P(z1) ◦ (1×�P(z2))→�P(z2) ◦ (�P(z1−z2) × 1)

such that for all w(1) ∈W1, w(2) ∈W2 and w(3) ∈W3, with Wj objects of C,

AP(z1−z2),P (z2)
P (z1),P (z2)

(
w(1)�P(z1) (w(2)�P(z2) w(3))

)= (w(1)�P(z1−z2) w(2))�P(z2) w(3),

where for simplicity we use the same notation AP(z1−z2),P (z2)
P (z1),P (z2)

to denote the isomor-
phism of generalized modules

AP(z1−z2),P (z2)
P (z1),P (z2)

:W1 �P(z1) (W2 �P(z2) W3)−→ (W1 �P(z1−z2) W2)�P(z2) W3.
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Here we are using the notation

η :W1→W2

to denote the natural extension of a map η :W1 →W2 of generalized modules to
the (suitably defined) formal completions; such natural extensions enter into many
of the constructions in this work.

In Sect. 11, we give results which will allow us to verify the convergence and
expansion conditions. We need the “convergence and extension property” for prod-
ucts or iterates and the “convergence and extension property without logarithms”
for products or iterates. Here we only give the convergence and extension property
for products:

Given objects W1, W2, W3, W4 and M1 of the category C, let Y1 and Y2 be
logarithmic intertwining operators of types

(
W4

W1M1

)
and

(
M1
W2W3

)
, respectively.

Convergence and Extension Property for Products For any β ∈ Ã, there exists
an integer Nβ depending only on Y1, Y2 and β , and for any weight-homogeneous
elements w(1) ∈ (W1)

(β1) and w(2) ∈ (W2)
(β2) (β1, β2 ∈ Ã) and any w(3) ∈W3 and

w′
(4) ∈W ′

4 such that

β1 + β2 =−β,
there exist M ∈ N, rk, sk ∈ R, ik, jk ∈ N, k = 1, . . . ,M ; K ∈ Z+ independent of
w(1) and w(2) such that each ik < K ; and analytic functions fk(z) on |z| < 1, k =
1, . . . ,M , satisfying

wtw(1) +wtw(2) + sk > Nβ, k = 1, . . . ,M,

such that
〈
w′(4),Y1(w(1), x2)Y2(w(2), x2)w(3)

〉
W4

∣∣
x1=z1,x2=z2

is absolutely convergent when |z1| > |z2| > 0 and can be analytically extended to
the multivalued analytic function

M∑

k=1

z
rk
2 (z1 − z2)

sk (log z2)
ik
(
log(z1 − z2)

)jkfk

(
z1 − z2

z2

)

(here log(z1−z2) and log z2, and in particular, the powers of the variables, mean the
multivalued functions, not the particular branch we have been using) in the region
|z2|> |z1 − z2|> 0.

Theorem 11.4 Suppose that the following two conditions are satisfied:

1. Every finitely-generated lower bounded doubly-graded (as defined in Sect. 11)
generalized V -module is an object of C (or every finitely-generated lower
bounded doubly-graded V -module is an object of C, when C is in Msg).
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2. The convergence and extension property for either products or iterates holds
in C (or the convergence and extension property without logarithms for either
products or iterates holds in C, when C is in Msg).

Then the convergence and expansion conditions for intertwining maps in C both
hold.

In the following two results, we assume that the grading abelian groups A and Ã
are trivial. Set

V+ =
∐

n>0

V(n).

Let W be a generalized V -module and let

C1(W)= span{u−1w | u ∈ V+,w ∈W }.
If W/C1(W) is finite dimensional, we say that W is C1-cofinite or satisfies the
C1-cofiniteness condition. If for any N ∈ R,

∐
n<N W[n] is finite dimensional, we

say that W is quasi-finite dimensional or satisfies the quasi-finite-dimensionality
condition. The following result in Sect. 11 allows us to verify the convergence and
extension properties and thus the convergence and expansion conditions:

Theorem 11.6 Let Wi for i = 0, . . . , n+1 be generalized V -modules satisfying the
C1-cofiniteness condition and the quasi-finite-dimensionality condition. Then for
any w′(0) ∈W ′

0, w(1) ∈W1, . . . , w(n+1) ∈Wn+1, there exist

ak,l(z1, . . . , zn) ∈C
[
z±1

1 , . . . , z±1
n , (z1 − z2)

−1, (z1 − z3)
−1, . . . , (zn−1 − zn)−1],

for k = 1, . . . ,m and l = 1, . . . , n, such that the following holds: For any generalized
V -modules W̃1, . . . , W̃n−1, and any logarithmic intertwining operators

Y1,Y2, . . . ,Yn−1,Yn

of types
(

W0

W1W̃1

)
,

(
W̃1

W2W̃2

)
, . . . ,

(
W̃n−2

Wn−1W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,

respectively, the series

〈
w′(0),Y1(w(1), z1) · · ·Yn(w(n), zn)w(n+1)

〉

satisfies the system of differential equations

∂mϕ

∂zml
+

m∑

k=1

ι|z1|>···>|zn|>0
(
ak,l(z1, . . . , zn)

)∂m−kϕ
∂zm−kl

= 0, l = 1, . . . , n
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in the region |z1|> · · ·> |zn|> 0, where

ι|z1|>···>|zn|>0
(
ak,l(z1, . . . , zn)

)

for k = 1, . . . ,m and l = 1, . . . , n are the (unique) Laurent expansions of ak,l(z1,

. . . , zn) in the region |z1|> · · ·> |zn|> 0. Moreover, for any set of possible singular
points of the system

∂mϕ

∂zml
+

m∑

k=1

ak,l(z1, . . . , zn)
∂m−kϕ
∂zm−kl

= 0, l = 1, . . . , n

such that either zi = 0 or zi = ∞ for some i or zi = zj for some i �= j , the
ak,l(z1, . . . , zn) can be chosen for k = 1, . . . ,m and l = 1, . . . , n so that these sin-
gular points are regular.

Using this result, we prove the following:

Theorem 11.8 Suppose that all generalized V -modules in C satisfy the C1-
cofiniteness condition and the quasi-finite-dimensionality condition. Then:

1. The convergence and extension properties for products and iterates hold in C.
If C is in Msg and if every object of C is a direct sum of irreducible objects of
C and there are only finitely many irreducible objects of C (up to equivalence),
then the convergence and extension properties without logarithms for products
and iterates hold in C.

2. For any n ∈ Z+, any objects W1, . . . ,Wn+1 and W̃1, . . . , W̃n−1 of C, any loga-
rithmic intertwining operators

Y1,Y2, . . . ,Yn−1,Yn

of types

(
W0

W1W̃1

)
,

(
W̃1

W2W̃2

)
, . . . ,

(
W̃n−2

Wn−1W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,

respectively, and any w′(0) ∈W ′
0, w(1) ∈W1, . . . , w(n+1) ∈Wn+1, the series

〈
w′(0),Y1(w(1), z1) · · ·Yn(w(n), zn)w(n+1)

〉
(11.37)

is absolutely convergent in the region |z1| > · · · > |zn| > 0 and its sum can be
analytically extended to a multivalued analytic function on the region given by
zi �= 0, i = 1, . . . , n, zi �= zj , i �= j , such that for any set of possible singular
points with either zi = 0, zi =∞ or zi = zj for i �= j , this multivalued analytic
function can be expanded near the singularity as a series having the same form
as the expansion near the singular points of a solution of a system of differential
equations with regular singular points.
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We now return to the assumptions before Theorem 11.6, that is, we do not as-
sume that A and Ã are trivial. To construct the braided tensor category structure, we
need more assumptions in addition to those mentioned above, which are collected
in Assumption 10.1. We assume in addition that the Möbius or conformal vertex al-
gebra V , viewed as a V -module, is an object of C; and also that the product of three
logarithmic intertwining operators is absolutely convergent in a suitable region and
can be analytically extended to a multivalued analytic function, admitting suitable
expansions as series in powers of the variables and their logarithms near its singu-
larities (expansions that hold for solutions of systems of differential equations with
regular singularities), on a suitable largest possible region containing the original
region for the convergence of the product. See Assumptions 12.1 and 12.2 for the
precise statements. Under these assumptions, we construct, in addition to the tensor
product bifunctor � = �P(1), a braiding isomorphism R, an associativity isomor-
phism A (for the braided tensor category structure, different from the associativity
isomorphisms above), a left unit isomorphism l and a right unit isomorphism r . The
following main results of this work are given in Sect. 12:

Theorem 12.15 Let V be a Möbius or conformal vertex algebra and C a full sub-
category of Msg or GMsg satisfying Assumptions 10.1, 12.1 and 12.2. Then the
category C, equipped with the tensor product bifunctor �, the unit object V , the
braiding isomorphism R, the associativity isomorphism A, and the left and right
unit isomorphisms l and r , is an additive braided monoidal category.

Corollary 12.16 If the category C is an abelian category, then C, equipped with
the tensor product bifunctor �, the unit object V , the braiding isomorphism R, the
associativity isomorphism A, and the left and right unit isomorphisms l and r , is a
braided tensor category.

2 The Setting: Strongly Graded Conformal and Möbius Vertex
Algebras and Their Generalized Modules

In this section we define and discuss the basic structures and introduce some nota-
tion that will be used in this work. More specifically, we first introduce the notions
of “conformal vertex algebra” and “Möbius vertex algebra.” A conformal vertex al-
gebra is just a vertex algebra equipped with a conformal vector satisfying the usual
axioms; a Möbius vertex algebra is a variant of a “quasi-vertex operator algebra”
as in [38], with the difference that the two grading restriction conditions in the def-
inition of vertex operator algebra are not required. We then define the notion of
module for each of these types of vertex algebra. Relaxing the L(0)-semisimplicity
in the definition of module we obtain the notion of “generalized module.” Finally,
we notice that in order to have a contragredient functor on the module category un-
der consideration, we need to impose a stronger grading condition. This leads to
the notions of “strong gradedness” of Möbius vertex algebras and their generalized
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modules. In this work we are mainly interested in certain full subcategories of the
category of strongly graded generalized modules for certain strongly graded Möbius
vertex algebras.

Throughout the work we shall assume some familiarity with the material in [15,
21, 37, 38] and [99].

In particular, we recall the necessary basic material on “formal calculus,” starting
with the “formal delta function.” Formal calculus will be needed throughout this
work, and in fact, the theory of formal calculus will be considerably developed,
whenever new formal-calculus ideas are needed for the formulations and for the
proofs of the results.

Throughout, we shall use the notation N for the nonnegative integers and Z+ for
the positive integers.

We shall continue to use the notational convention concerning formal variables
and complex variables given in Remark 1.3. Recall from [37, 38] or [99] that the
formal delta function is defined as the formal series

δ(x)=
∑

n∈Z
xn

in the formal variable x. We will consistently use the binomial expansion conven-
tion: For any complex number λ, (x + y)λ is to be expanded as a formal series in
nonnegative integral powers of the second variable, i.e.,

(x + y)λ =
∑

n∈N

(
λ

n

)
xλ−nyn.

Here x or y might be something other than a formal variable (or a nonzero complex
multiple of a formal variable); for instance, x or y (but not both; this expansion is
understood to be formal) might be a nonzero complex number, or x or y might be
some more complicated object. The use of the binomial expansion convention will
be clear in context.

Objects like δ(x) and (x + y)λ lie in spaces of formal series. Some of the spaces
that we will use are, with W a vector space (over C) and x a formal variable:

W [x] =
{∑

n∈N
anx

n
∣∣∣an ∈W, all but finitely many an = 0

}

(the space of formal polynomials with coefficients in W ),

W
[
x, x−1]=

{∑

n∈Z
anx

n
∣∣∣an ∈W, all but finitely many an = 0

}

(the formal Laurent polynomials),

W [[x]] =
{∑

n∈N
anx

n
∣∣∣an ∈W (with possibly infinitely many an not 0)

}
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(the formal power series),

W((x))=
{∑

n∈Z
anx

n
∣∣∣an ∈W,an = 0 for sufficiently small n

}

(the truncated formal Laurent series), and

W
[[
x, x−1]]=

{∑

n∈Z
anx

n
∣∣∣an ∈W (with possibly infinitely many an not 0)

}

(the formal Laurent series). We will also need the space

W {x} =
{∑

n∈C
anx

n
∣∣∣an ∈W for n ∈C

}
(2.1)

as in [37]; here the powers of the formal variable are complex, and the coefficients
may all be nonzero. We will also use analogues of these spaces involving two or
more formal variables. Note that for us, a “formal power series” involves only non-
negative integral powers of the formal variable(s), and a “formal Laurent series” can
involve all the integral powers of the formal variable(s).

The following formal version of Taylor’s theorem is easily verified by direct
expansion (see Proposition 8.3.1 of [37]): For f (x) ∈W {x},

ey(d/dx)f (x)= f (x + y), (2.2)

where the exponential denotes the formal exponential series, and where we are using
the binomial expansion convention on the right-hand side. It is important to note
that this formula holds for arbitrary formal series f (x) with complex powers of x,
where f (x) need not be an expansion in any sense of an analytic function (again,
see Proposition 8.3.1 of [37]).

The formal delta function δ(x) has the following simple and fundamental prop-
erty: For any f (x) ∈W [x, x−1],

f (x)δ(x)= f (1)δ(x). (2.3)

(Here we are taking the liberty of writing complex numbers to the right of vectors
in W .) This is proved immediately by observing its truth for f (x) = xn and then
using linearity. This property has many important variants; in general, whenever an
expression is multiplied by the formal delta function, we may formally set the argu-
ment appearing in the delta function equal to 1, provided that the relevant algebraic
expressions make sense. For example, for any

X(x1, x2) ∈ (EndW)
[[
x1, x

−1
1 , x2, x

−1
2

]]

such that

lim
x1→x2

X(x1, x2)=X(x1, x2)
∣∣
x1=x2

(2.4)
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exists, we have

X(x1, x2)δ

(
x1

x2

)
=X(x2, x2)δ

(
x1

x2

)
. (2.5)

The existence of the “algebraic limit” defined in (2.4) means that for an arbi-
trary vector w ∈ W , the coefficient of each power of x2 in the formal expansion
X(x1, x2)w|x1=x2 is a finite sum. In general, the existence of such “algebraic lim-
its,” and also such products of formal sums, always means that the coefficient of
each monomial in the relevant formal variables gives a finite sum. Often, proving
the existence of the relevant algebraic limits (or products) is a much more subtle
matter than computing such limits (or products), just as in analysis. (In this work,
we will typically use “substitution notation” like |x1=x2 or X(x2, x2) rather than the
formal limit notation on the left-hand side of (2.4).) Below, we will give a more so-
phisticated analogue of the delta-function substitution principle (2.5), an analogue
that we will need in this work.

This analogue, and in fact, many fundamental principles of vertex operator al-
gebra theory, are based on certain delta-function expressions of the following type,
involving three (commuting and independent, as usual) formal variables:

x−1
0 δ

(
x1 − x2

x0

)
=

∑

n∈Z

(x1 − x2)
n

xn+1
0

=
∑

m∈N,n∈Z
(−1)m

(
n

m

)
x−n−1

0 xn−m1 xm2 ;

here the binomial expansion convention is of course being used.
The following important identities involving such three-variable delta-function

expressions are easily proved (see [37] or [99], where extensive motivation for these
formulas is also given):

x−1
2 δ

(
x1 − x0

x2

)
= x−1

1 δ

(
x2 + x0

x1

)
, (2.6)

x−1
0 δ

(
x1 − x2

x0

)
− x−1

0 δ

(
x2 − x1

−x0

)
= x−1

2 δ

(
x1 − x0

x2

)
. (2.7)

Note that the three terms in (2.7) involve nonnegative integral powers of x2, x1 and
x0, respectively. In particular, the two terms on the left-hand side of (2.7) are unequal
formal Laurent series in three variables, even though they might appear equal at first
glance. We shall use these two identities extensively.

Remark 2.1 Here is the useful analogue, mentioned above, of the delta-function
substitution principle (2.5): Let

f (x1, x2, y) ∈ (EndW)
[[
x1, x

−1
1 , x2, x

−1
2 , y, y−1]] (2.8)

be such that

lim
x1→x2

f (x1, x2, y) exists (2.9)
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and such that for any w ∈W ,

f (x1, x2, y)w ∈W
[[
x1, x

−1
1 , x2, x

−1
2

]]
((y)). (2.10)

Then

x−1
1 δ

(
x2 − y
x1

)
f (x1, x2, y)= x−1

1 δ

(
x2 − y
x1

)
f (x2 − y, x2, y). (2.11)

For this principle, see Remark 2.3.25 of [99], where the proof is also presented.

The following formal residue notation will be useful: For

f (x)=
∑

n∈C
anx

n ∈W {x}

(note that the powers of x need not be integral),

Resx f (x)= a−1.

For instance, for the expression in (2.6),

Resx2 x
−1
2 δ

(
x1 − x0

x2

)
= 1. (2.12)

For a vector space W , we will denote its vector space dual by W ∗
(= HomC(W,C)), and we will use the notation 〈·, ·〉W , or 〈·, ·〉 if the underlying
space W is clear, for the canonical pairing between W ∗ and W .

We will use the following version of the notion of “conformal vertex algebra”:
A conformal vertex algebra is a vertex algebra (in the sense of Borcherds [15]; see
[99]) equipped with a Z-grading and with a conformal vector satisfying the usual
compatibility conditions. Specifically:

Definition 2.2 A conformal vertex algebra is a Z-graded vector space

V =
∐

n∈Z
V(n) (2.13)

(for v ∈ V(n), we say the weight of v is n and we write wtv = n) equipped with a
linear map V ⊗ V → V [[x, x−1]], or equivalently,

V → (EndV )
[[
x, x−1

]]

v �→ Y(v, x)=
∑

n∈Z
vnx

−n−1 (where vn ∈ EndV ), (2.14)

Y(v, x) denoting the vertex operator associated with v, and equipped also with
two distinguished vectors 1 ∈ V(0) (the vacuum vector) and ω ∈ V(2) (the confor-
mal vector), satisfying the following conditions for u,v ∈ V : the lower truncation



Logarithmic Tensor Category Theory 219

condition:

unv = 0 for n sufficiently large (2.15)

(or equivalently, Y(u, x)v ∈ V ((x))); the vacuum property:

Y(1, x)= 1V ; (2.16)

the creation property:

Y(v, x)1 ∈ V [[x]] and lim
x→0

Y(v, x)1= v (2.17)

(that is, Y(v, x)1 involves only nonnegative integral powers of x and the constant
term is v); the Jacobi identity (the main axiom):

x−1
0 δ

(
x1 − x2

x0

)
Y(u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y(v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y

(
Y(u, x0)v, x2

)
(2.18)

(note that when each expression in (2.18) is applied to any element of V , the co-
efficient of each monomial in the formal variables is a finite sum; on the right-
hand side, the notation Y(·, x2) is understood to be extended in the obvious way to
V [[x0, x

−1
0 ]]); the Virasoro algebra relations:

[
L(m),L(n)

]= (m− n)L(m+ n)+ 1

12

(
m3 −m)

δn+m,0c (2.19)

for m,n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y(ω,x)=
∑

n∈Z
L(n)x−n−2, (2.20)

c ∈ C (2.21)

(the central charge or rank of V );

d

dx
Y (v, x)= Y (

L(−1)v, x
)

(2.22)

(the L(−1)-derivative property); and

L(0)v = nv = (wtv)v for n ∈ Z and v ∈ V(n). (2.23)

This completes the definition of the notion of conformal vertex algebra. We will
denote such a conformal vertex algebra by (V ,Y,1,ω) or simply by V .

The only difference between the definition of conformal vertex algebra and the
definition of vertex operator algebra (in the sense of [37] and [38]) is that a vertex
operator algebra V also satisfies the two grading restriction conditions

V(n) = 0 for n sufficiently negative, (2.24)
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and

dimV(n) <∞ for n ∈ Z. (2.25)

(As we mentioned above, a vertex algebra is the same thing as a conformal vertex
algebra but without the assumptions of a grading or a conformal vector, or, of course,
the L(n)’s.)

Remark 2.3 Of course, not every vertex algebra is conformal. For example, it is well
known [15] that any commutative associative algebra A with unit 1, together with a
derivation D :A→A can be equipped with a vertex algebra structure, by:

Y(·, x)· :A×A→A[[x]], Y (a, x)b= (
exDa

)
b,

and 1= 1. In particular, un = 0 for any u ∈ A and n ≥ 0. If ω is a conformal vec-
tor for such a vertex algebra, then for any u ∈ A, Du = u−21 = L(−1)u from
(2.17) and (2.22), so D = L(−1) = ω0, which equals 0 because ω = L(0)ω/2 =
ω1ω/2 = 0. Thus a vertex algebra constructed from a commutative associative al-
gebra with nonzero derivation in this way cannot be conformal.

Remark 2.4 The theory of vertex tensor categories inherently uses the whole moduli
space of spheres with two positively oriented punctures and one negatively oriented
puncture (and in fact, more generally, with arbitrary numbers of positively oriented
punctures and one negatively oriented puncture) equipped with general (analytic)
local coordinates vanishing at the punctures. Because of the analytic local coordi-
nates, our constructions require certain conditions on the Virasoro algebra operators.
However, recalling the definition of the moduli space elements P(z) from Sect. 1.4,
we point out that if we restrict our attention to elements of the moduli space of only
the type P(z), then the relevant operations of sewing and subsequently decompos-
ing Riemann spheres continue to yield spheres of the same type, and rather than
general conformal transformations around the punctures, only Möbius (projective)
transformations around the punctures are needed. This makes it possible to develop
the essential structure of our tensor product theory by working entirely with spheres
of this special type; the general vertex tensor category theory then follows from the
structure thus developed. This is why, in the present work, we are focusing on the
theory of P(z)-tensor products. Correspondingly, it turns out that it is very natural
for us to consider, along with the notion of conformal vertex algebra (Definition 2.2),
a weaker notion of vertex algebra involving only the three-dimensional subalgebra
of the Virasoro algebra corresponding to the group of Möbius transformations. That
is, instead of requiring an action of the whole Virasoro algebra, we use only the
action of the Lie algebra sl(2) generated by L(−1), L(0) and L(1). Thus we get a
notion essentially identical to the notion of “quasi-vertex operator algebra” in [38];
the reason for focusing on this notion here is the same as the reason why it was con-
sidered in [38]. Here we designate this notion by the term “Möbius vertex algebra”;
the only difference between the definition of Möbius vertex algebra and the defini-
tion of quasi-vertex operator algebra [38] is that a quasi-vertex operator algebra V
also satisfies the two grading restriction conditions (2.24) and (2.25).
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Thus we formulate:

Definition 2.5 The notion of Möbius vertex algebra is defined in the same way
as that of conformal vertex algebra except that in addition to the data and axioms
concerning V , Y and 1 (through (2.18) in Definition 2.2), we assume (in place of
the existence of the conformal vector ω and the Virasoro algebra conditions (2.19),
(2.20) and (2.21)) the following: We have a representation ρ of sl(2) on V given by

L(j)= ρ(Lj ), j = 0,±1, (2.26)

where {L−1,L0,L1} is a basis of sl(2) with Lie brackets

[L0,L−1] = L−1, [L0,L1] = −L1, and [L−1,L1] = −2L0, (2.27)

and the following conditions hold for v ∈ V :
[
L(−1), Y (v, x)

] = Y (
L(−1)v, x

)
, (2.28)

[
L(0), Y (v, x)

] = Y (
L(0)v, x

)+ xY (
L(−1)v, x

)
, (2.29)

[
L(1), Y (v, x)

] = Y (
L(1)v, x

)+ 2xY
(
L(0)v, x

)

+ x2Y
(
L(−1)v, x

)
, (2.30)

and also, (2.22) and (2.23). Of course, (2.28)–(2.30) can be written as

[
L(j),Y (v, x)

] =
j+1∑

k=0

(
j + 1

k

)
xkY

(
L(j − k)v, x)

=
j+1∑

k=0

(
j + 1

k

)
xj+1−kY

(
L(k − 1)v, x

)
(2.31)

for j = 0,±1.

We will denote such a Möbius vertex algebra by (V ,Y,1, ρ) or simply by V .
Note that there is no notion of central charge (or rank) for a Möbius vertex algebra.
Also, a conformal vertex algebra can certainly be viewed as a Möbius vertex algebra
in the obvious way. (Of course, a conformal vertex algebra could have other sl(2)-
structures making it a Möbius vertex algebra in a different way.)

Remark 2.6 By (2.26) and (2.27) we have [L(0),L(j)] = −jL(j) for j = 0,±1.
Hence

L(j)V(n) ⊂ V(n−j), for j = 0,±1. (2.32)

Moreover, from (2.28), (2.29) and (2.30) with v = 1 we get, by (2.16) and (2.17),

L(j)1= 0 for j = 0,±1.
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Remark 2.7 Not every Möbius vertex algebra is conformal. As an example, take the
commutative associative algebra C[t] with derivation D =−d/dt , and form a ver-
tex algebra as in Remark 2.3. By Remark 2.3, this vertex algebra is not conformal.
However, define linear operators

L(−1)=D, L(0)= tD, L(1)= t2D
on C[t]. Then it is straightforward to verify that C[t] becomes a Möbius vertex al-
gebra with these operators giving a representation of sl(2) having the desired prop-
erties and with the Z-grading (by nonpositive integers) given by the eigenspace
decomposition with respect to L(0).

Remark 2.8 It is also easy to see that not every vertex algebra is Möbius. For exam-
ple, take the two-dimensional commutative associative algebra A= C1⊕Ca with
1 as identity and a2 = 0. The linear operator D defined by D(1)= 0, D(a)= a is
a nonzero derivation of A. Hence A has a vertex algebra structure by Remark 2.3.
Now if it is a module for sl(2) as in Definition 2.5, since A is two-dimensional
and L(0)1 = 0, L(0) must act as 0. But then D = L(−1) = [L(0),L(−1)] = 0, a
contradiction.

A module for a conformal vertex algebra V is a module for V viewed as a vertex
algebra such that the conformal element acts in the same way as in the definition of
vertex operator algebra. More precisely:

Definition 2.9 Given a conformal vertex algebra (V ,Y,1,ω), a module for V is a
C-graded vector space

W =
∐

n∈C
W(n) (2.33)

(graded by weights) equipped with a linear map V ⊗W →W [[x, x−1]], or equiva-
lently,

V → (EndW)
[[
x, x−1

]]

v �→ Y(v, x)=
∑

n∈Z
vnx

−n−1 (where vn ∈ EndW)
(2.34)

(note that the sum is over Z, not C), Y(v, x) denoting the vertex operator on W
associated with v, such that all the defining properties of a conformal vertex alge-
bra that make sense hold. That is, the following conditions are satisfied: the lower
truncation condition: for v ∈ V and w ∈W ,

vnw = 0 for n sufficiently large (2.35)

(or equivalently, Y(v, x)w ∈W((x))); the vacuum property:

Y(1, x)= 1W ; (2.36)
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the Jacobi identity for vertex operators on W : for u,v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
Y(u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y(v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y

(
Y(u, x0)v, x2

)
(2.37)

(note that on the right-hand side, Y(u, x0) is the operator on V associated with u);
the Virasoro algebra relations on W with scalar c equal to the central charge of V :

[
L(m),L(n)

]= (m− n)L(m+ n)+ 1

12

(
m3 −m)

δn+m,0c (2.38)

for m,n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y(ω,x)=
∑

n∈Z
L(n)x−n−2; (2.39)

d

dx
Y (v, x) = Y (

L(−1)v, x
)

(2.40)

(the L(−1)-derivative property); and
(
L(0)− n)w = 0 for n ∈C and w ∈W(n). (2.41)

This completes the definition of the notion of module for a conformal vertex
algebra.

Remark 2.10 The Virasoro algebra relations (2.38) for a module action follow from
the corresponding relations (2.19) for V together with the Jacobi identities (2.18)
and (2.37) and the L(−1)-derivative properties (2.22) and (2.40), as we recall from
(for example) [38] or [99].

We also have:

Definition 2.11 The notion of module for a Möbius vertex algebra is defined in the
same way as that of module for a conformal vertex algebra except that in addition
to the data and axioms concerning W and Y (through (2.37) in Definition 2.9), we
assume (in place of the Virasoro algebra conditions (2.38) and (2.39)) a representa-
tion ρ of sl(2) on W given by (2.26) and the conditions (2.28), (2.29) and (2.30),
for operators acting on W , and also, (2.40) and (2.41).

In addition to modules, we have the following notion of generalized module (or
logarithmic module, as in, for example, [104]):

Definition 2.12 A generalized module for a conformal (respectively, Möbius) ver-
tex algebra is defined in the same way as a module for a conformal (respectively,
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Möbius) vertex algebra except that in the grading (2.33), each spaceW(n) is replaced
by W[n], where W[n] is the generalized L(0)-eigenspace corresponding to the (gen-
eralized) eigenvalue n ∈ C; that is, (2.33) and (2.41) in the definition are replaced
by

W =
∐

n∈C
W[n] (2.42)

and

for n ∈C and w ∈W[n],
(
L(0)− n)mw = 0 for m ∈N sufficiently large, (2.43)

respectively. Forw ∈W[n], we still write wtw = n for the (generalized) weight ofw.

We will denote such a module or generalized module just defined by (W,Y ), or
sometimes by (W,YW ) or simply by W . We will use the notation

πn :W →W[n] (2.44)

for the projection from W to its subspace of (generalized) weight n, and for its
natural extensions to spaces of formal series with coefficients in W . In either the
conformal or Möbius case, a module is of course a generalized module.

Remark 2.13 For any vector space U on which an operator, say, L(0), acts in such
a way that

U =
∐

n∈C
U[n] (2.45)

where for n ∈C,

U[n] =
{
u ∈U |(L(0)− n)mu= 0 for m ∈N sufficiently large

}
,

we shall typically use the same projection notation

πn :U→U[n] (2.46)

as in (2.44). If instead of (2.45) we have only

U =
∑

n∈C
U[n],

then in fact this sum is indeed direct, and for any L(0)-stable subspace T of U , we
have

T =
∐

n∈C
T[n]

(as with ordinary rather than generalized eigenspaces).
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Remark 2.14 A module for a conformal vertex algebra V is obviously again a mod-
ule for V viewed as a Möbius vertex algebra, and conversely, a module for V viewed
as a Möbius vertex algebra is a module for V viewed as a conformal vertex algebra,
by Remark 2.10. Similarly, the generalized modules for a conformal vertex algebra
V are exactly the generalized modules for V viewed as a Möbius vertex algebra.

Remark 2.15 A conformal or Möbius vertex algebra is a module for itself (and in
particular, a generalized module for itself).

Remark 2.16 In either the conformal or Möbius vertex algebra case, we have the
obvious notions of V -module homomorphism, submodule, quotient module, and
so on; in particular, homomorphisms are understood to be grading-preserving. We
sometimes write the vector space of (generalized-) module maps (homomorphisms)
W1→W2 for (generalized) V -modules W1 and W2 as HomV (W1,W2).

Remark 2.17 We have chosen the name “generalized module” here because the vec-
tor space underlying the module is graded by generalized eigenvalues. (This notion
is different from the notion of “generalized module” used in [72]. A generalized
module for a vertex operator algebra V as defined in, for example, Definition 2.11
of [72] is precisely a module for V viewed as a conformal vertex algebra.)

We will use the following notion of (formal algebraic) completion of a general-
ized module:

Definition 2.18 LetW =∐
n∈CW[n] be a generalized module for a Möbius (or con-

formal) vertex algebra. We denote by W the (formal) completion of W with respect
to the C-grading, that is,

W =
∏

n∈C
W[n]. (2.47)

We will use the same notation U for any C-graded subspace U of W . We will
continue to use the notation πn for the projection from W to W[n]:

πn :W →W[n].

We will also continue to use the notation 〈·, ·〉W , or 〈·, ·〉 if the underlying space is
clear, for the canonical pairing between the subspace

∐
n∈C(W[n])∗ of W ∗, and W .

We are of course viewing (W[n])∗ as embedded in W ∗ in the natural way, that is, for
w∗ ∈ (W[n])∗,

〈
w∗,w

〉
W
= 〈
w∗,wn

〉
W[n] (2.48)

for any w =∑
m∈Cwm (finite sum) in W , where wm ∈W[m].

The following weight formula holds for generalized modules, generalizing the
corresponding formula in the module case (cf. [104]):
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Proposition 2.19 Let W be a generalized module for a Möbius (or conformal) ver-
tex algebra V . Let both v ∈ V and w ∈W be homogeneous. Then

wt(vnw) = wtv+wtw− n− 1 for any n ∈ Z, (2.49)

wt
(
L(j)w

) = wtw− j for j = 0,±1. (2.50)

Proof Applying the L(−1)-derivative property (2.40) to formula (2.29), with the
operators acting on W , and extracting the coefficient of x−n−1, we obtain:

[
L(0), vn

]= (
L(0)v

)
n
+ (−n− 1)vn. (2.51)

This can be written as
(
L(0)− (wtv− n− 1)

)
vn = vnL(0),

and so we have
(
L(0)− (wtv+m− n− 1)

)
vn = vn

(
L(0)−m)

for any m ∈C. Applying this repeatedly we get
(
L(0)− (wtv+m− n− 1)

)t
vn = vn

(
L(0)−m)t

for any t ∈N, m ∈C, and (2.49) follows.
For (2.50), since as operators acting on W we have

[
L(0),L(j)

]=−jL(j) (2.52)

for j = 0,±1, we get (L(0)+ j)L(j)= L(j)L(0) so that
(
L(0)−m+ j)L(j)= L(j)(L(0)−m)

for any m ∈C. Thus
(
L(0)−m+ j)tL(j)= L(j)(L(0)−m)t

for any t ∈N, m ∈C, and (2.50) follows. �

Remark 2.20 From Proposition 2.19 we see that a generalized V -module W de-
composes into submodules corresponding to the congruence classes of its weights
modulo Z: For μ ∈C/Z, let

W[μ] =
∐

n̄=μ
W[n], (2.53)

where n̄ denotes the equivalence class of n ∈C in C/Z. Then

W =
∐

μ∈C/Z
W[μ] (2.54)
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and each W[μ] is a V -submodule of W . Thus if a generalized module W is inde-
composable (in particular, if it is irreducible), then all complex numbers n for which
W[n] �= 0 are congruent modulo Z to each other.

Remark 2.21 Let W be a generalized module for a Möbius (or conformal) vertex
algebra V . We consider the “semisimple part” L(0)s ∈ EndW of the operator L(0):

L(0)sw = nw for w ∈W[n], n ∈C.

Then on W we have

[
L(0)s, vn

] = [
L(0), vn

]
for all v ∈ V and n ∈ Z; (2.55)

[
L(0)s,L(j)

] = [
L(0),L(j)

]
for j = 0,±1. (2.56)

Indeed, for homogeneous elements v ∈ V and w ∈W , (2.49) and (2.51) imply that

[
L(0)s, vn

]
w = L(0)s(vnw)− vn

(
L(0)sw

)

= (wtv +wtw− n− 1)vnw− (wtw)vnw

= (wtv)vnw+ (−n− 1)vnw

= (
L(0)v

)
n
w+ (−n− 1)vnw

= [
L(0), vn

]
w.

Similarly, for any homogeneous element w ∈W and j = 0,±1, (2.50) and (2.52)
imply that

[
L(0)s,L(j)

]
w = L(0)s

(
L(j)w

)−L(j)(L(0)sw
)

= (wtw− j)L(j)w− (wtw)L(j)w

= −jL(j)w
= [

L(0),L(j)
]
w.

Thus the “locally nilpotent part” L(0)−L(0)s of L(0) commutes with the action of
V and of sl(2) on W . In other words, L(0)−L(0)s is a V -homomorphism from W

to itself.

Now suppose that L(1) acts locally nilpotently on a Möbius (or conformal) ver-
tex algebra V , that is, for any v ∈ V , there is m ∈ N such that L(1)mv = 0. Then
generalizing formula (3.20) in [72] (the case of ordinary modules for a vertex op-
erator algebra), we define the opposite vertex operator on a generalized V -module
(W,YW ) associated to v ∈ V by

YoW (v, x)= YW
(
exL(1)

(−x−2)L(0)v, x−1), (2.57)
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that is, for k ∈ Z and v ∈ V(k),

YoW (v, x) =
∑

n∈Z
vonx

−n−1

=
∑

n∈Z

(
(−1)k

∑

m∈N

1

m!
(
L(1)mv

)
−n−m−2+2k

)
x−n−1, (2.58)

as in [72]. (In the present work, we are replacing the symbol ∗ used in [72] for
opposite vertex operators by the symbol o; see also Sect. 5.1 below.) Here we are
defining the component operators

von = (−1)k
∑

m∈N

1

m!
(
L(1)mv

)
−n−m−2+2k (2.59)

for v ∈ V(k) and n, k ∈ Z. Note that the L(1)-local nilpotence ensures well-
definedness here. Clearly, v �→ YoW (v, x) is a linear map V → (EndW)[[x, x−1]]
such that V ⊗W →W((x−1)) (v⊗w �→ YoW (v, x)w).

By (2.59), (2.32) and (2.49), we see that for n, k ∈ Z and v ∈ V(k), the operator
von is of generalized weight n+ 1− k (= n+ 1−wtv), in the sense that

vonW[m] ⊂W[m+n+1−k] for any m ∈C. (2.60)

As mentioned in [72] (see (3.23) in [72]), the proof of the Jacobi identity in
Theorem 5.2.1 of [38] proves the following opposite Jacobi identity for YoW in the
case where V is a vertex operator algebra and W is a V -module:

x−1
0 δ

(
x1 − x2

x0

)
YoW (v, x2)Y

o
W (u, x1)

− x−1
0 δ

(
x2 − x1

−x0

)
YoW (u, x1)Y

o
W (v, x2)

= x−1
2 δ

(
x1 − x0

x2

)
YoW

(
Y(u, x0)v, x2

)
(2.61)

for u,v ∈ V , and taking Resx0 gives us the opposite commutator formula. Similarly,
the proof of the L(−1)-derivative property in Theorem 5.2.1 of [38] proves the
following L(−1)-derivative property for YoW in the same case:

d

dx
Y oW (v, x)= YoW

(
L(−1)v, x

)
. (2.62)

The same proofs carry over and prove the opposite Jacobi identity and the L(−1)-
derivative property for YoW in the present case, where V is a Möbius (or conformal)
vertex algebra with L(1) acting locally nilpotently and where W is a generalized
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V -module. In the case in which V is a conformal vertex algebra, we have

YoW (ω,x)= YW
(
x−4ω,x−1)=

∑

n∈Z
L(n)xn−2 (2.63)

since L(1)ω= 0.
For opposite vertex operators, we have the following analogues of (2.28)–(2.31)

in the Möbius case:

Lemma 2.22 For v ∈ V ,

[
YoW (v, x),L(1)

] = YoW
(
L(−1)v, x

)
, (2.64)

[
YoW (v, x),L(0)

] = YoW
(
L(0)v, x

)+ xY oW
(
L(−1)v, x

)
, (2.65)

[
YoW (v, x),L(−1)

] = YoW
(
L(1)v, x

)+ 2xY oW
(
L(0)v, x

)

+ x2YoW
(
L(−1)v, x

)
. (2.66)

Equivalently,

[
YoW (v, x),L(−j)

] =
j+1∑

k=0

(
j + 1

k

)
xkY oW

(
L(j − k)v, x)

=
j+1∑

k=0

(
j + 1

k

)
xj+1−kY oW

(
L(k − 1)v, x

)
(2.67)

for j = 0,±1.

Proof For j = 0,±1, by definition and (2.31) we have

[
YoW (v, x),L(j)

]

=−[
L(j),YW

(
exL(1)

(−x−2)L(0)v, x−1)]

=−
j+1∑

k=0

(
j + 1

k

)
x−kYW

(
L(j − k)exL(1)(−x−2)L(0)v, x−1). (2.68)

By (5.2.14) in [38] and the fact that

xL(0)L(j)x−L(0) = x−jL(j) (2.69)

(easily proved by applying to a homogeneous vector),

L(−1)exL(1)
(−x−2)L(0)

= exL(1)L(−1)
(−x−2)L(0) − 2xexL(1)L(0)

(−x−2)L(0)
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+ x2exL(1)L(1)
(−x−2)L(0)

=−x2exL(1)
(−x−2)L(0)L(−1)− 2xexL(1)

(−x−2)L(0)L(0)

− exL(1)(−x−2)L(0)L(1)

=−exL(1)(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1)). (2.70)

We also have

L(1)exL(1)
(−x−2)L(0) = exL(1)L(1)(−x−2)L(0)

= −x−2exL(1)
(−x−2)L(0)L(1). (2.71)

By (2.70), (2.71), L(0)= 1
2 [L(1),L(−1)] and [L(1),L(0)] = L(1), we have

L(0)exL(1)
(−x−2)L(0)

= 1

2
L(1)L(−1)exL(1)

(−x−2)L(0) − 1

2
L(−1)L(1)exL(1)

(−x−2)L(0)

=−1

2
L(1)exL(1)

(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1))

+ 1

2
x−2L(−1)exL(1)

(−x−2)L(0)L(1)

= 1

2
x−2exL(1)

(−x−2)L(0)L(1)
(
x2L(−1)+ 2xL(0)+L(1))

− 1

2
x−2exL(1)

(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1))L(1)

= exL(1)(−x−2)L(0)L(0)+ x−1exL(1)
(−x−2)L(0)L(1)

= exL(1)(−x−2)L(0)(L(0)+ x−1L(1)
)
. (2.72)

Thus we obtain
[
YoW (v, x),L(1)

]

=−
2∑

k=0

(
2

k

)
x−kYW

(
L(1− k)exL(1)(−x−2)L(0)v, x−1)

=−YW
(
L(1)exL(1)

(−x−2)L(0)v, x−1)

− 2x−1YW
(
L(0)exL(1)

(−x−2)L(0)v, x−1)

− x−2YW
(
L(−1)exL(1)

(−x−2)L(0)v, x−1)

= x−2YW
(
exL(1)

(−x−2)L(0)L(1)v, x−1)
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− 2x−1YW
(
exL(1)

(−x−2)L(0)(L(0)+ x−1L(1)
)
v, x−1)

+ x−2YW
(
exL(1)

(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1))v, x−1)

= YW
(
exL(1)

(−x−2)L(0)L(−1)v, x−1)

= YoW
(
L(−1)v, x

)
,

[
YoW (v, x),L(0)

]

=−
1∑

k=0

(
1

k

)
x−kYW

(
L(−k)exL(1)(−x−2)L(0)v, x−1)

=−YW
(
L(0)exL(1)

(−x−2)L(0)v, x−1)

− x−1YW
(
L(−1)exL(1)

(−x−2)L(0)v, x−1)

=−YW
(
exL(1)

(−x−2)L(0)(L(0)+ x−1L(1)
)
v, x−1)

+ x−1YW
(
exL(1)

(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1))v, x−1)

= YW
(
exL(1)

(−x−2)L(0)(xL(−1)+L(0))v, x−1)

= YoW
(
L(0)v, x

)+ xY oW
(
L(−1)v, x

)

and
[
YoW (v, x),L(−1)

] = −YW
(
L(−1)exL(1)

(−x−2)L(0)v, x−1)

= YW
(
exL(1)

(−x−2)L(0)(x2L(−1)+ 2xL(0)+L(1))v, x−1)

= YoW
(
L(1)v, x

)+ 2xY oW
(
L(0)v, x

)+ x2YoW
(
L(−1)v, x

)
,

proving the lemma. �

As in Sect. 5.2 of [38], we can define a V -action on W ∗ as follows:
〈
Y ′(v, x)w′,w

〉= 〈
w′, Y oW (v, x)w

〉
(2.73)

for v ∈ V , w′ ∈W ∗ and w ∈W ; the correspondence v �→ Y ′(v, x) is a linear map
from V to (EndW ∗)[[x, x−1]]. Writing

Y ′(v, x)=
∑

n∈Z
vnx

−n−1

(vn ∈ EndW ∗), we have
〈
vnw

′,w
〉= 〈

w′, vonw
〉

(2.74)

for v ∈ V , w′ ∈W ∗ and w ∈W . (Actually, in [38] this V -action was defined on a
space smaller thanW ∗, but this definition holds without change on all ofW ∗.) In the
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case in which V is a conformal vertex algebra we define the operators L′(n) (n ∈ Z)
by

Y ′(ω, x)=
∑

n∈Z
L′(n)x−n−2;

then, by extracting the coefficient of x−n−2 in (2.73) with v = ω and using the fact
that L(1)ω= 0 we have

〈
L′(n)w′,w

〉= 〈
w′,L(−n)w〉

for n ∈ Z (2.75)

(see (2.63)), as in Sect. 5.2 of [38]. In the case where V is only a Möbius vertex
algebra, we define operators L′(−1), L′(0) and L′(1) on W ∗ by formula (2.75) for
n= 0,±1. It follows from (2.50) that

L′(j)(W[m])∗ ⊂ (W[m−j ])∗ (2.76)

for m ∈C and j = 0,±1. By combining (2.74) with (2.60) we get

vn(W[m])∗ ⊂ (W[m+k−n−1])∗ (2.77)

for any n, k ∈ Z, v ∈ V(k) and m ∈C.
We have just seen that the L(1)-local nilpotence condition enables us to define a

natural vertex operator action on the vector space dual of a generalized module for
a Möbius (or conformal) vertex algebra. This condition is satisfied by all vertex op-
erator algebras, due to (2.32) and the grading restriction condition (2.24). However,
the functor W �→W ∗ is certainly not involutive, and W ∗ is not in general a general-
ized module. In this work we will need certain module categories equipped with an
involutive “contragredient functor” W �→W ′ which generalizes the contragredient
functor for the category of modules for vertex operator algebras. For this purpose,
we introduce the following:

Definition 2.23 Let A be an abelian group. A Möbius (or conformal) vertex algebra

V =
∐

n∈Z
V(n)

is said to be strongly graded with respect toA (or stronglyA-graded, or just strongly
graded if the abelian group A is understood) if V is equipped with a second grada-
tion, by A,

V =
∐

α∈A
V (α),

such that the following conditions are satisfied: the two gradations are compatible,
that is,

V (α) =
∐

n∈Z
V
(α)
(n)

(
where V (α)

(n) = V(n) ∩ V (α)
)

for any α ∈A;
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for any α,β ∈A and n ∈ Z,

V
(α)
(n) = 0 for n sufficiently negative; (2.78)

dimV
(α)
(n) <∞; (2.79)

1 ∈ V (0)
(0) ; (2.80)

vlV
(β) ⊂ V (α+β) for any v ∈ V (α), l ∈ Z; (2.81)

and

L(j)V (α) ⊂ V (α) for j = 0,±1. (2.82)

If V is in fact a conformal vertex algebra, we in addition require that

ω ∈ V (0)
(2) , (2.83)

so that for all j ∈ Z, (2.82) follows from (2.81).

Remark 2.24 Note that the notion of conformal vertex algebra strongly graded with
respect to the trivial group is exactly the notion of vertex operator algebra. Also
note that (2.32), (2.78) and (2.82) imply the local nilpotence of L(1) acting on V ,
and hence we have the construction and properties of opposite vertex operators on a
generalized module for a strongly graded Möbius (or conformal) vertex algebra.

For (generalized) modules for a strongly graded algebra we will also have a sec-
ond grading by an abelian group, and it is natural to allow this group to be larger
than the second grading group A for the algebra. (Note that this already occurs for
the first grading group, which is Z for algebras and C for (generalized) modules.)
We now define the notions of strongly graded module and generalized module, and
also, at the end of this definition, the notions of lower bounded such structures.

Definition 2.25 Let A be an abelian group and V a strongly A-graded Möbius (or
conformal) vertex algebra. Let Ã be an abelian group containing A as a subgroup.
A V -module (respectively, generalized V -module)

W =
∐

n∈C
W(n)

(
respectively, W =

∐

n∈C
W[n]

)

is said to be strongly graded with respect to Ã (or strongly Ã-graded, or just strongly
graded) if the abelian group Ã is understood) if W is equipped with a second gra-
dation, by Ã,

W =
∐

β∈Ã
W(β), (2.84)
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such that the following conditions are satisfied: the two gradations are compatible,
that is, for any β ∈ Ã,

W(β) =
∐

n∈C
W
(β)

(n)

(
where W(β)

(n) =W(n) ∩W(β)
)

(
respectively, W(β) =

∐

n∈C
W
(β)
[n]

(
where W(β)

[n] =W[n] ∩W(β)
));

for any α ∈A, β ∈ Ã and n ∈C,

W
(β)

(n+k) = 0
(
respectively, W(β)

[n+k] = 0
)

for k ∈ Z sufficiently negative; (2.85)

dimW
(β)

(n)
<∞ (

respectively, dimW
(β)
[n] <∞

); (2.86)

vlW
(β) ⊂W(α+β) for any v ∈ V (α), l ∈ Z; (2.87)

and

L(j)W(β) ⊂W(β) for j = 0,±1. (2.88)

(Note that if V is in fact a conformal vertex algebra, then for all j ∈ Z, (2.88) follows
from (2.83) and (2.87).) A strongly Ã-graded (generalized) V -module W is said to
be lower bounded if instead of (2.85), it satisfies the stronger condition that for any
β ∈ Ã,

W
(β)

(n)
= 0

(
respectively, W(β)

[n] = 0
)

for -(n) sufficiently negative (2.89)

(n ∈C).

Remark 2.26 A stronglyA-graded conformal or Möbius vertex algebra is a strongly
A-graded module for itself (and in particular, a strongly A-graded generalized mod-
ule for itself), and is in fact lower bounded.

Remark 2.27 Let V be a vertex operator algebra, viewed (equivalently) as a con-
formal vertex algebra strongly graded with respect to the trivial group (recall Re-
mark 2.24). Then the V -modules that are strongly graded with respect to the trivial
group (in the sense of Definition 2.25) are exactly the (C-graded) modules for V as
a vertex operator algebra, with the grading restrictions as follows: For n ∈C,

W(n+k) = 0 for k ∈ Z sufficiently negative (2.90)

and

dimW(n) <∞, (2.91)

and the lower bounded such structures have (2.90) replaced by:

W(n) = 0 for -(n) sufficiently negative. (2.92)
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Also, the generalized V -modules that are strongly graded with respect to the trivial
group are exactly the generalized V -modules (in the sense of Definition 2.12) such
that for n ∈C,

W[n+k] = 0 for k ∈ Z sufficiently negative (2.93)

and

dimW[n] <∞, (2.94)

and the lower bounded ones have (2.90) replaced by:

W[n] = 0 for -(n) sufficiently negative. (2.95)

Remark 2.28 In the strongly graded case, algebra and module homomorphisms are
of course understood to preserve the grading by A or Ã.

Example 2.29 An important source of examples of strongly graded conformal ver-
tex algebras and modules comes from the vertex algebras and modules associated
with even lattices. Let L be an even lattice, i.e., a finite-rank free abelian group
equipped with a nondegenerate symmetric bilinear form 〈·, ·〉, not necessarily pos-
itive definite, such that 〈α,α〉 ∈ 2Z for all α ∈ L. Then there is a natural structure
of conformal vertex algebra on a certain vector space VL; see [15] and Chap. 8 of
[37]. If the form 〈·, ·〉 on L is also positive definite, then VL is a vertex operator
algebra (that is, the grading restrictions hold). If L is not necessarily positive defi-
nite, then VL is equipped with a natural second grading given by L itself, making
VL a strongly L-graded conformal vertex algebra in the sense of Definition 2.23.
Any (rational) sublattice M of the “dual lattice” L◦ of L containing L gives rise to
a lower bounded strongly M-graded module for the strongly L-graded conformal
vertex algebra (see Chap. 8 of [37]; cf. [99]).

In the next two remarks, we mention certain important properties of compositions
of two or more vertex operators, properties that will also be important in the further
generality of logarithmic intertwining operators in the future.

Remark 2.30 As mentioned in Remark 2.24, strong gradedness for a Möbius (or
conformal) vertex algebra V implies the local nilpotence of L(1) acting on V .
In fact, strong gradedness implies much more that will be important for us: From
(2.78), (2.79), (2.81) and (2.82) (and (2.83) in the conformal vertex algebra case), it
is clear that strong gradedness for V implies the following local grading restriction
condition on V (see [58]):

(i) for anym> 0 and v(1), . . . , v(m) ∈ V , there exists r ∈ Z such that the coefficient
of each monomial in x1, . . . , xm−1 in the formal series

Y(v(1), x1) · · ·Y(v(m−1), xm−1)v(m)

lies in
∐
n>r V(n);
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(ii) in the conformal vertex algebra case: for any element of the conformal vertex al-
gebra V homogeneous with respect to the weight grading, the Virasoro-algebra
submodule M =∐

n∈ZM(n) (where M(n) =M ∩ V(n)) of V generated by this
element satisfies the following grading restriction conditions: M(n) = 0 when n
is sufficiently negative and dimM(n) <∞ for n ∈ Z

or

(ii′) in the Möbius vertex algebra case: for any element of the Möbius vertex algebra
V homogeneous with respect to the weight grading, the sl(2)-submodule M =∐
n∈ZM(n) (where M(n) =M ∩ V(n)) of V generated by this element satisfies

the following grading restriction conditions: M(n) = 0 when n is sufficiently
negative and dimM(n) <∞ for n ∈ Z.

As was pointed out in [58], Condition (i) above was first stated in [21] (see formula
(9.39), Proposition 9.17 and Theorem 12.33 in [21]) for generalized vertex alge-
bras and abelian intertwining algebras (certain generalizations of vertex algebras);
it guarantees the convergence, rationality and commutativity properties of the ma-
trix coefficients of products of more than two vertex operators. Conditions (i) and
(ii) (or (ii′)) together ensure that all the essential results involving the Virasoro op-
erators and the geometry of vertex operator algebras in [52] and [56] still hold for
these algebras.

Remark 2.31 Similarly, from (2.85), (2.86), (2.87) and (2.88) (and (2.83) in the con-
formal vertex algebra case), it is clear that strong gradedness for (generalized) mod-
ules implies the following local grading restriction condition on a (generalized)
module W for a strongly graded Möbius (or conformal) vertex algebra V :

(i) for any m > 0, v(1), . . . , v(m−1) ∈ V , n ∈ C and w ∈ W[n], there exists r ∈ Z

such that the coefficient of each monomial in x1, . . . , xm−1 in the formal series

Y(v(1), x1) · · ·Y(v(m−1), xm−1)w

lies in
∐
k>r W[n+k];

(ii) in the conformal vertex algebra case: for any w ∈W[n] (n ∈ C), the Virasoro-
algebra submodule M = ∐

k∈ZM[n+k] (where M[n+k] = M ∩ W[n+k]) of W
generated by w satisfies the following grading restriction conditions: M[n+k] =
0 when k is sufficiently negative and dimM[n+k] <∞ for k ∈ Z

or

(ii′) in the Möbius vertex algebra case: for any w ∈ W[n] (n ∈ C), the sl(2)-
submodule M =∐

k∈ZM[n+k] (where M[n+k] =M ∩W[n+k]) of W generated
by w satisfies the following grading restriction conditions: M[n+k] = 0 when k
is sufficiently negative and dimM[n+k] <∞ for k ∈ Z.

Note that in the case of ordinary (as opposed to generalized) modules, all the gener-
alized weight spaces such as W[n] mentioned here are ordinary weight spaces W(n).
Analogous statements of course hold for lower bounded (generalized) modules.
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With the strong gradedness condition on a (generalized) module, we can now
define the corresponding notion of contragredient module. First we give:

Definition 2.32 LetW =∐
β∈Ã,n∈CW

(β)
[n] be a strongly Ã-graded generalized mod-

ule for a strongly A-graded Möbius (or conformal) vertex algebra. For each β ∈ Ã
and n ∈C, let us identify (W(β)

[n] )∗ with the subspace of W ∗ consisting of the linear

functionals on W vanishing on each W(γ )
[m] with γ �= β or m �= n (cf. (2.48)). We

define W ′ to be the (Ã×C)-graded vector subspace of W ∗ given by

W ′ =
∐

β∈Ã,n∈C

(
W ′)(β)

[n] , where
(
W ′)(β)

[n] =
(
W
(−β)
[n]

)∗; (2.96)

we also use the notations

(
W ′)(β) =

∐

n∈C

(
W
(−β)
[n]

)∗ ⊂ (
W(−β))∗ ⊂W ∗ (2.97)

(where (W(β))∗ consists of the linear functionals on W vanishing on all W(γ ) with
γ �= β) and

(
W ′)

[n] =
∐

β∈Ã

(
W
(−β)
[n]

)∗ ⊂ (W[n])∗ ⊂W ∗ (2.98)

for the homogeneous subspaces of W ′ with respect to the Ã- and C-grading, respec-
tively. (The reason for the minus signs here will become clear below.) We will still
use the notation 〈·, ·〉W , or 〈·, ·〉 when the underlying space is clear, for the canonical
pairing between W ′ and

W ⊂
∏

β∈Ã,n∈C
W
(β)
[n]

(recall (2.47)).

Remark 2.33 In the case of ordinary rather than generalized modules, Defini-
tion 2.32 still applies, and all of the generalized weight subspaces W[n] of W are
ordinary weight spaces W(n). In this case, we can write (W ′)(n) rather than (W ′)[n]
for the corresponding subspace of W ′.

Let W be a strongly graded (generalized) module for a strongly graded Möbius
(or conformal) vertex algebra V . Recall that we have the action (2.73) of V on W ∗
and that (2.77) holds. Furthermore, (2.59), (2.74) and (2.87) imply for any n, k ∈ Z,
α ∈A, β ∈ Ã, v ∈ V (α)

(k)
and m ∈C,

vn
((
W ′)(β)

[m]
)= vn

((
W
(−β)
[m]

)∗)⊂ (
W
(−α−β)
[m+k−n−1]

)∗ = (
W ′)(α+β)

[m+k−n−1]. (2.99)
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Thus vn preserves W ′ for v ∈ V , n ∈ Z. Similarly (in the Möbius case), (2.75),
(2.76) and (2.88) imply that W ′ is stable under the operators L′(−1), L′(0) and
L′(1), and in fact

L′(j)
(
W ′)(β)

[n] ⊂
(
W ′)(β)

[n−j ]

for any j = 0,±1, β ∈ Ã and n ∈C. In the case or ordinary rather than generalized
modules, the symbols (W ′)(β)[n] , etc., can be replaced by (W ′)(β)(n) , etc.

For any fixed β ∈ Ã and n ∈ C, by (2.43) and the finite-dimensionality (2.86)
of W(−β)

[n] , there exists N ∈ N such that (L(0) − n)NW(−β)
[n] = 0. But then for any

w′ ∈ (W ′)(β)[n] ,
〈(
L′(0)− n)Nw′,w〉= 〈

w′,
(
L(0)− n)Nw〉= 0 (2.100)

for all w ∈W . Thus (L′(0)− n)Nw′ = 0. So (2.43) holds with W replaced by W ′.
In the case of ordinary modules, we of course take N = 1.

By (2.85) and (2.99) we have the lower truncation condition for the action Y ′ of
V on W ′:

For any v ∈ V and w′ ∈W ′, vnw
′ = 0 for n sufficiently large. (2.101)

As a consequence, the Jacobi identity can now be formulated on W ′. In fact, by
the above, and using the same proofs as those of Theorems 5.2.1 and 5.3.1 in [38],
together with Lemma 2.22, we obtain:

Theorem 2.34 Let Ã be an abelian group containing A as a subgroup and V a
strongly A-graded Möbius (or conformal) vertex algebra. Let (W,Y ) be a strongly
Ã-graded V -module (respectively, generalized V -module). Then the pair (W ′, Y ′)
carries a strongly Ã-graded V -module (respectively, generalized V -module) struc-
ture, and

(
W ′′, Y ′′

)= (W,Y ).
If W is lower bounded, then so is W ′.

Definition 2.35 The pair (W ′, Y ′) in Theorem 2.34 will be called the contragredi-
ent module of (W,Y ).

Let W1 and W2 be strongly Ã-graded (generalized) V -modules and let f :W1→
W2 be a module homomorphism (which is of course understood to preserve both
the C-grading and the Ã-grading, and to preserve the action of sl(2) in the Möbius
case). Then by (2.74) and (2.75), the linear map

f ′ :W ′
2→W ′

1

given by
〈
f ′

(
w′(2)

)
,w(1)

〉= 〈
w′(2), f (w(1))

〉
(2.102)
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for any w(1) ∈W1 and w′(2) ∈W ′
2 is well defined and is clearly a module homomor-

phism from W ′
2 to W ′

1.

Notation 2.36 In this work we will be especially interested in the case where V is
strongly A-graded, and we will be focusing on the category of all strongly Ã-graded
(ordinary) V -modules, for which we will use the notation

Msg,

or the category of all strongly Ã-graded generalized V -modules, which we will call

GMsg.

From the above we see that in the strongly graded case we have contravariant func-
tors

(·)′ : (W,Y ) �→ (
W ′, Y ′

)
,

the contragredient functors, from Msg to itself and from GMsg to itself, and also
from the full subcategories of lower bounded such structures to themselves. We also
know that V itself is a (lower bounded) object of Msg (and thus of GMsg as well);
recall Remark 2.26. Our main objects of study will be certain full subcategories C
of Msg or GMsg that are closed under the contragredient functor and such that
V ∈ obC.

Remark 2.37 In order to formulate certain results in this work, even in the case
when our Möbius or conformal vertex algebra V is strongly graded we will in fact
sometimes use the category whose objects are all the modules for V and whose mor-
phisms are all the V -module homomorphisms, and also the category of all the gen-
eralized modules for V . (If V is conformal, then the category of all the V -modules
is the same whether V is viewed as either conformal or Möbius, by Remark 2.14,
and similarly for the category of all the generalized V -modules.) Note that in view
of Remark 2.28, the categories Msg and GMsg are not full subcategories of these
categories of all modules and generalized modules.

We now recall from [21, 37, 38] and [99] the well-known principles that vertex
operator algebras (which are exactly conformal vertex algebras strongly graded with
respect to the trivial group; recall Remark 2.24) and their modules have important
“rationality,” “commutativity” and “associativity” properties, and that these prop-
erties can in fact be used as axioms replacing the Jacobi identity in the definition
of the notion of vertex operator algebra. (These principles in fact generalize to all
vertex algebras, as in [99].)

In the propositions below,

C[x1, x2]S
is the ring of formal rational functions obtained by inverting (localizing with respect
to) the products of (zero or more) elements of the set S of nonzero homogeneous
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linear polynomials in x1 and x2. Also, ι12 (which might also be written as ιx1x2 )
is the operation of expanding an element of C[x1, x2]S , that is, a polynomial in
x1 and x2 divided by a product of homogeneous linear polynomials in x1 and x2,
as a formal series containing at most finitely many negative powers of x2 (using
binomial expansions for negative powers of linear polynomials involving both x1
and x2); similarly for ι21 and so on. (The distinction between rational functions and
formal Laurent series is crucial.)

Let V be a vertex operator algebra. For W a (C-graded) V -module (including
possibly V itself), the space W ′ is just the “restricted dual space”

W ′ =
∐

n∈C
W ∗
(n). (2.103)

Proposition 2.38 We have:

(a) (Rationality of products) For v, v1, v2 ∈ V and v′ ∈ V ′, the formal series
〈
v′, Y (v1, x1)Y (v2, x2)v

〉
, (2.104)

which involves only finitely many negative powers of x2 and only finitely many
positive powers of x1, lies in the image of the map ι12:

〈
v′, Y (v1, x1)Y (v2, x2)v

〉= ι12f (x1, x2), (2.105)

where the (uniquely determined) element f ∈C[x1, x2]S is of the form

f (x1, x2)= g(x1, x2)

xr1x
s
2(x1 − x2)t

(2.106)

for some g ∈C[x1, x2] and r, s, t ∈ Z.
(b) (Commutativity) We also have

〈
v′, Y (v2, x2)Y (v1, x1)v

〉= ι21f (x1, x2). (2.107)

Proposition 2.39 We have:

(a) (Rationality of iterates) For v, v1, v2 ∈ V and v′ ∈ V ′, the formal series
〈
v′, Y

(
Y(v1, x0)v2, x2

)
v
〉
, (2.108)

which involves only finitely many negative powers of x0 and only finitely many
positive powers of x2, lies in the image of the map ι20:

〈
v′, Y

(
Y(v1, x0)v2, x2

)
v
〉= ι20h(x0, x2), (2.109)

where the (uniquely determined) element h ∈C[x0, x2]S is of the form

h(x0, x2)= k(x0, x2)

xr0x
s
2(x0 + x2)t

(2.110)

for some k ∈C[x0, x2] and r, s, t ∈ Z.



Logarithmic Tensor Category Theory 241

(b) The formal series 〈v′, Y (v1, x0 + x2)Y (v2, x2)v〉, which involves only finitely
many negative powers of x2 and only finitely many positive powers of x0, lies in
the image of ι02, and in fact

〈
v′, Y (v1, x0 + x2)Y (v2, x2)v

〉= ι02h(x0, x2). (2.111)

Proposition 2.40 (Associativity) We have the following equality of formal rational
functions:

ι−1
12

〈
v′, Y (v1, x1)Y (v2, x2)v

〉= (
ι−1
20

〈
v′, Y

(
Y(v1, x0)v2, x2

)
v
〉)∣∣
x0=x1−x2

, (2.112)

that is,

f (x1, x2)= h(x1 − x2, x2).

Proposition 2.41 In the presence of the other axioms for the notion of vertex opera-
tor algebra, the Jacobi identity follows from the rationality of products and iterates,
and commutativity and associativity. In particular, in the definition of vertex opera-
tor algebra, the Jacobi identity may be replaced by these properties.

The rationality, commutativity and associativity properties immediately imply
the following result, in which the formal variables x1 and x2 are specialized to
nonzero complex numbers in suitable domains:

Corollary 2.42 The formal series obtained by specializing x1 and x2 to (nonzero)
complex numbers z1 and z2, respectively, in (2.104) converges to a rational function
of z1 and z2 in the domain

|z1|> |z2|> 0 (2.113)

and the analogous formal series obtained by specializing x1 and x2 to z1 and z2,
respectively, in (2.107) converges to the same rational function of z1 and z2 in the
(disjoint) domain

|z2|> |z1|> 0. (2.114)

Moreover, the formal series obtained by specializing x0 and x2 to z1 − z2 and z2,
respectively, in (2.108) converges to this same rational function of z1 and z2 in the
domain

|z2|> |z1 − z2|> 0. (2.115)

In particular, in the common domain

|z1|> |z2|> |z1 − z2|> 0, (2.116)

we have the equality
〈
v′, Y (v1, z1)Y (v2, z2)v

〉= 〈
v′, Y

(
Y(v1, z1 − z2)v2, z2

)
v
〉

(2.117)

of rational functions of z1 and z2.
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Remark 2.43 These last five results also hold for modules for a vertex operator alge-
bra V ; in the statements, one replaces the vectors v and v′ by elementsw andw′ of a
V -module W and its restricted dual W ′, respectively, and Proposition 2.41becomes:
Given a vertex operator algebra V , in the presence of the other axioms for the no-
tion of V -module, the Jacobi identity follows from the rationality of products and
iterates, and commutativity and associativity. In particular, in the definition of V -
module, the Jacobi identity may be replaced by these properties.

For either vertex operator algebras or modules, it is sometimes convenient to
express the equalities of rational functions in Corollary 2.42 informally as follows:

Y(v1, z1)Y (v2, z2)∼ Y(v2, z2)Y (v1, z1) (2.118)

and

Y(v1, z1)Y (v2, z2)∼ Y
(
Y(v1, z1 − z2)v2, z2

)
, (2.119)

meaning that these expressions, defined in the domains indicated in Corollary 2.42
when the “matrix coefficients” of these expressions are taken as in this corollary,
agree as operator-valued rational functions, up to analytic continuation.

Remark 2.44 Formulas (2.118) and (2.119) (or more precisely, (2.117)), express the
meromorphic, or single-valued, version of “duality,” in the language of conformal
field theory. Formulas (2.119) (and (2.117)) express the existence and associativ-
ity of the single-valued, or meromorphic, operator product expansion. This is the
statement that the product of two (vertex) operators can be expanded as a (suitable,
convergent) infinite sum of vertex operators, and that this sum can be expressed in
the form of an iterate of vertex operators, parametrized by the complex numbers
z1 − z2 and z2, in the format indicated; the infinite sum comes from expanding
Y(Y (v1, z1 − z2)v2, z2) in powers of z1 − z2. A central goal of this work is to gen-
eralize (2.118) and (2.119), or more precisely, (2.117), to logarithmic intertwining
operators in place of the operators Y(·, z). This will give the existence and also the
associativity of the general, nonmeromorphic operator product expansion. This was
done in the non-logarithmic setting in [72–74] and [53]. In the next section, we shall
develop the concept of logarithmic intertwining operator.
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C2-Cofinite W-Algebras and Their Logarithmic
Representations

Dražen Adamović and Antun Milas

Abstract We discuss our recent results on the representation theory of W-algebras
relevant to Logarithmic Conformal Field Theory. First we explain some general
constructions of W-algebras coming from screening operators. Then we review the
results on C2-cofiniteness, the structure of Zhu’s algebras, and the existence of log-
arithmic modules for triplet vertex algebras. We propose some conjectures and open
problems which put the theory of triplet vertex algebras into a broader context. New
realizations of logarithmic modules for W-algebras defined via screenings are also
presented.

1 Introduction: Irrational C2-Cofinite Vertex Algebras

Vertex algebras are in many ways analogous to associative algebras, at least from the
point of view of representation theory. Rational vertex operator algebras [2, 68] and
regular vertex algebras have semisimple categories of modules and should be com-
pared to (finite-dimensional) semisimple associative algebras. If we seek the same
analogy with finite-dimensional non-semisimple associative algebras, we would
eventually discover irrational C2-cofinite vertex algebras (the C2-condition guar-
antees that the vertex algebra has finitely many inequivalent irreducibles [68]). But
oddly as it might seem, examples of such vertex algebras are rare and actually not
much is known about them. For instance, it is not even known if there exists an
irrational vertex algebra with finitely many indecomposable modules.

Motivated by important works of physicists [27–29, 41], in our recent papers
[4, 6, 9, 11] (see also [1, 17]), among many other things, we constructed new fami-
lies of irrational C2-cofinite (i.e., quasi-rational) vertex algebras and superalgebras.
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The most surprising fact about quasi-rational vertex algebras is that all known exam-
ples are expected to be related to certain finite-dimensional quantum groups (Hopf
algebras) via the conjectural Kazhdan-Lusztig correspondences [25, 28, 29]. It is
also known that the module category of a C2-cofinite vertex algebra has a natural
finite tensor category structure [46, 51], although not necessarily rigid [62] (see also
[39, 40] for related categorical issues).

2 Preliminaries

This paper deals mainly with the representation theory of certain vertex algebras.
Because we are interested in their Z≥0-graded modules, the starting point is to
recall the definition of Zhu’s algebra for vertex operator (super)algebras follow-
ing [52, 68].

Let (V ,Y,1,ω) be a vertex operator algebra. We shall always assume that V is
of CFT type, meaning that it has N≥0 grading with the vacuum vector lying on the
top component. Let V =∐

n∈Z≥0
V (n). For a ∈ V (n), we shall write deg(a) = n.

As usual, vertex operator associated to a ∈ V is denoted by Y(a, x), with the mode
expansion

Y(a, x)=
∑

n∈Z
anx

−n−1.

We define two bilinear maps: ∗ : V × V → V , ◦ : V × V → V as follows. For
homogeneous a, b ∈ V let

a ∗ b = Resx Y (a, x)
(1+ x)deg(a)

x
b

a ◦ b = Resx Y (a, x)
(1+ x)deg(a)

x2
b

Next, we extend ∗ and ◦ on V ⊗ V linearly, and denote by O(V )⊂ V the linear
span of elements of the form a ◦ b, and by A(V ) the quotient space V/O(V ). The
space A(V ) has an associative algebra structure (with identity), with the multipli-
cation induced by ∗. Algebra A(V ) is called the Zhu’s algebra of V . The image of
v ∈ V , under the natural map V �→A(V ) will be denoted by [v].

For a homogeneous a ∈ V we define o(a)= adeg(a)−1. In the case when V 0̄ = V ,
V is a vertex operator algebra and we get the usual definition of Zhu’s algebra for
vertex operator algebras.

According to [68], there is an one-to-one correspondence between irreducible
A(V )-modules and irreducible Z≥0-graded V -modules.

Moreover, if U is any A(V )-module. There is Z≥0-graded V -module L(U) such
that the top component L(U)(0) ∼= U . V is called rational, if every Z≥0-graded
module is completely reducible.

With V as above, we let C2(V ) = 〈a−2b : a, b ∈ V 〉, and P(V ) = V/C2(V ).
The quotient space V/C2(V ) has an algebraic structure of a commutative Poisson
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algebra [68]. Explicitly, if we denote by ā the image of a under the natural map
V �→ P(V ) the Poisson bracket is given by {a, b} = a0b and commutative product
a · b = a−1b. From the given definitions it is not hard to construct an increasing
filtration of A(V ) such that grA(V ) maps onto A(V ).

3 Quantum W-Algebras from Integral Lattices

W-algebras are some of the most exciting objects in representation theory and have
been extensively studied from many different point of views. There are several dif-
ferent types of W-algebras in the literature, so to avoid any confusion we stress
that (a) finite W -algebras are certain associative algebras associated to a complex
semisimple Lie algebra g and a nilpotent element e ∈ g [20, 66], and can be viewed
as deformations of Slodowy’s slice, and (b) affine W -algebras are vertex algebras1

obtained by Drinfeld-Sokolov reduction from affine vertex algebras [34]. The two
algebras are related via a fundamental construction of Zhu (cf. [14, 21]). In this
paper, (quantum) W-algebras are vertex algebra generalizations of the affine W -
algebras. More precisely

Definition 3.1 A W-algebra V is a vertex algebra strongly generated by a finite set
of primary vectors u1, . . . , uk . Here strongly generated means that elements of the
form

u
i1−j1
· · ·uim−jm1, j1, . . . , jm ≥ 1 (1)

form a spanning set of V . If deg(ui)= ri we say that V is of type (2, r1, . . . , rk).

Let us first outline the well-known construction of lattice vertex algebra VL as-
sociated to a positive definite even lattice (L, 〈 〉). We denote by C[L] the group
algebra of L. As a vector space

VL =M(1)⊗C[L], M(1)= S(ĥ<0),

where S(ĥ<0) is the usual Fock space. The vertex algebra VL is known to be ratio-
nal [22]. Denote by L◦ the dual lattice of L. For β ∈ L◦ we have “bosonic” vertex
operators

Y
(
eβ, x

)=
∑

n∈Z
eβnx

−n−1,

introduced in [23, 37]. It is also known [22] that all irreducible VL-modules are
given by Vγ , γ ∈ L◦/L.

1n.b. For brevity, we shall often use “algebra” and “vertex algebra” when we mean “superalgebra”
and “vertex superalgebra”, respectively. From the context it should be clear whether the adjective
“super” is needed.
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Now, we specialize L = √pQ, where p ≥ 2 and Q is a root lattice (of ADE
type). We should say that this restriction is not that crucial right now, and in fact we
can obtain interesting objects even if the lattice L is (say) hyperbolic. We equip VL
with a vertex algebra structure [16, 37] (by choosing an appropriate 2-cocycle). Let
αi denote the simple roots of Q. For the conformal vector we conveniently choose

ω= ωst + p− 1

2
√
p

∑

α∈�+
α(−2)1,

where ωst is the standard (quadratic) Virasoro generator [37, 54]. Then VL is a
conformal vertex algebra of central charge2

rank(L)+ 12(ρ,ρ)

(
2− p− 1

p

)
.

Consider the operators

e
√
pαi

0 , e
−αj /√p
0 , 1≤ i, j ≤ rank(L) (2)

acting between VL and VL-modules. These are the so-called screening operators.
More precisely,

Lemma 3.1 For every i and j the operators e
√
pαi

0 and e
−αj /√p
0 commute with each

other, and they both commute with the Virasoro algebra.

We shall refer to e
√
pαi

0 and e
−αj /√p
0 , as the long and short screening, respec-

tively. It is well-known that the intersection of the kernels of residues of vertex
operators is a vertex subalgebra (cf. [34]), so the next problem seems very natural
to ask

Problem 1 What kind of vertex algebras can we construct from the kernels of
screenings in (2)? What choices of (2) give rise to C2-cofinite vertex (sub)algebras?

3.1 Affine W-Algebras

The above construction with screening operators naturally leads to affine W-
algebras. The affine W-algebra associated to ĝ at level k �= −h∨, denoted by Wk(g)

is defined as

H ∗k (g),

2Without the linear term the central charge would be rank(L).
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where the cohomology is taken with respect to a quantized BRST complex for the
Drinfeld-Sokolov Hamiltonian reduction [35]. As shown by Feigin and Frenkel (cf.
[35] and [34] and citations therein) this cohomology is nontrivial only in degree
zero. Moreover, it is known that Wk(g) is a quantum W-algebra (according to our
definition) freely generated by rank(g) primary fields. Although not evident from
our discussion, the vacuum vertex algebra Vk(ĝ) coming from the affine Kac-Moody
Lie algebra ĝ enters in the definition of H 0

k (g) (see again [34]). It is possible to
replace Vk(ĝ) with its irreducible quotient Lk(ĝ), but then the theory becomes much
more complicated [14].

An important theorem of B. Feigin and E. Frenkel [34] says that if k is generic
and g is simply-laced, then there is an alternative description of Wk(g). For this
purpose, we let ν = k + h∨, where k is generic. Then there are appropriately defined
screenings

e
−αi/√ν
0 :M(1)−→M(1,−αi/√ν),

such that

Wk(g)=
l⋂

i=1

KerM(1)
(
e
−αi/√ν
0

)
,

where l = rank(L). If we assume in addition that g is simply laced (ADE type) then
we also have the following important duality [34]

Wk(g)=
l⋂

i=1

KerM(1)
(
e
√
ναi

0

)
.

Now, let us consider the case when L = √pQ, p ∈ N, in connection with the
problem we just raised. Having in mind the previous construction, it is natural to
ask whether p = k + h∨ is also generic. For instance, it is known (cf. [36]) that
p = 1 is generic. Next result seems to be known in the physics literature

Theorem 3.1 Let g be simply laced. Then p = k + h∨ ∈N≥2 is non-generic. More
precisely,

l⋂

i=1

KerM(1) e
−αi/√p
0

is a vertex algebra containing Wk(g) as a proper subalgebra.

Interestingly enough, for long screenings, we do expect “genericness” to hold:

Conjecture 3.1 For p ≥ 2 as above

Wk(g)=
l⋂

i=1

KerM(1) e
√
pαi

0
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This conjecture is known to be true in the rank one case, where the kernel of the
long screening is precisely the Virasoro vertex algebra L(cp,1,0) of central charge

1− 6(p−1)2

p
. But for the short screening we obtain the so-called singlet algebraM(1)

of type W(2,2p − 1), an extension of L(cp,1,0) [3, 4] (the special case p = 2 has
been extensively studied in [1, 19, 65], etc.). Both vertex algebras are neither rational
nor C2-cofinite.

Let

hr,s = (sp− r)2 − (p− 1)2

4p
.

Theorem 3.2 [3] Zhu’s associative algebra A(M(1)) is isomorphic to the commu-
tative algebra C[x, y]/〈P(x, y)〉, where 〈P(x, y)〉 is the principal ideal generated
by

P(x, y)= y2 −Cp(x − hp,1)
p−1∏

i=1

(x − hi,1)2 (Cp �= 0).

Now, by using results in Sect. 2, we see that irreducible M(1)-modules are pa-
rameterized by zeros of a certain rational curve in C

2. We expect that irreducible
modules for vertex operator algebras from Theorem 3.1 also have interesting inter-
pretation in the context of algebraic curves.

3.2 Further Extended Affine W-Algebras

Instead of focusing on the charge zero subspace M(1) (the Fock space), nothing
prevented us from considering intersections of the kernels of screenings on the
whole lattice vertex algebra VL. Let us first examine the long screenings in this
situation. Conjecturally, we expect to produce a certain vertex algebra denoted by

W.(p)Q :=⋂l
i=1 KerVL e

√
pαi

0 , with a large ideal I such that W.(p)Q/I ∼=Wk(g)

(the structure of W.(p) was analyzed in [60] in connection to Feigin-Stoyanovsky’s
principal subspaces [24]).

Example 3.1 For Q=A1, we have

W.(p)Q =
〈
e
√
pα1,ω

〉
,

the smallest conformal vertex subalgebra of VL containing the vector eα1 . Here
〈e√pα1〉 is the well-known FS principal subspace [24] (see also [60]).
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3.3 Maximally Extended W-Algebras: A Conjecture

Due to differences already observed in Theorem 3.1 and Conjecture 3.1, it is not
surprising that the conformal vertex algebra

W(p)Q :=
l⋂

i=1

KerVL e
−αj /√p
0 (3)

will exhibit properties different to those observed for W.(p)Q.
We believe the following rather strong conjecture motivated by [25] holds.

Conjecture 3.2 We have

(1) The vertex algebra W(p)Q is irrational and C2-cofinite.
(2) It is strongly generated by the generators of Wk(g) and finitely many primary

vectors.
(3) SocWk(g)(VL)=W(p)Q.
(4) W(p)Q admits logarithmic modules of L(0)-nilpotent rank at most rank(L)+1

(for the explanation see Sect. 5).
(5) dimA(W(p)Q)= dimP(W(p)Q).

Let us briefly comment on (5) first. For V a C2-cofinite vertex operator alge-
bra. M. Gaberdiel and T. Gannon in [42] initiated a relationship between A(V ) and
P(V ). They raised an interesting question: When does dimA(V )= dimP(V )? For
a large family of rational vertex operator algebras of affine type, the equality of
dimensions holds (cf. [26, 30]). In [10], we studied this question for C2-cofinite,
irrational vertex operator superalgebras, and proved that (5) holds in the rank one
case.

The first half of part (1) of the conjecture is known to be true in general, and this
follows also from (4). We have already shown in [4] the conjecture to be true for
Q=A1. In this case we write W(p)=W(p)Q for brevity.

3.4 Triplet Vertex Algebra W(p)

The next result was proven in [4] and [10].

Theorem 3.3 The following holds:

(1) W(p) is C2-cofinite and irrational.
(2) W(p) is strongly generated by ω and three primary vectors E, F and H of

conformal weight 2p− 1.
(3) W(p) has exactly 2p irreducible modules, usually denoted by

Λ(1), . . . ,Λ(p);Π(1), . . . ,Π(p).



256 D. Adamović and A. Milas

(4)

dimA
(
W(p)

)= dimP
(
W(p)

)= 6p− 1.

Let us here recall description of C2-algebra P(W(p)). Generators of P(W(p))

are given by

ω̄, H̄ , Ē, F̄ ,

and the relations are

Ē2 = F̄ 2 = H̄ F̄ = H̄ Ē = 0,

H̄ 2 = −ĒF̄ = νω̄2p−1 (ν �= 0),

ω̄pH̄ = ω̄pĒ = ω̄pF̄ = 0.

The complete description of the structure of Zhu’s algebra was obtained in [10],
where we developed a new method for the determination of Zhu’s algebra which
was based on a construction of homomorphism of Φ :A(M(1))→A(W(p)). Then
we described the kernel of such homomorphism, and by using knowledge of Zhu’s
algebra A(M(1)) for the singlet vertex algebra M(1) mentioned earlier, we get the
following result:

Theorem 3.4 [4, 10] Zhu’s algebra A(W(p)) decomposes as a direct sum:

A
(
W(p)

)=
3p−1⊕

i=2p

Mhi,1 ⊕
p−1⊕

i=1

Ihi,1 ⊕Chp,1 ,

where Mhi,1 ideal isomorphic to matrix algebra M2(C), Ihi,1 is 2-dimensional ideal,
Chp,1 is 1-dimensional ideal. The structure of Zhu’s algebra A(W(p)) implies the
existence of logarithmic modules.

The similar result was obtained in [10] for what we called the super-triplet vertex
algebra SW(m). The advantage of the method used in [10] is that for the descrip-
tion of Zhu’s algebra we don’t use any result about the existence of logarithmic
representations. In our approach, the existence of logarithmic representations is a
consequence of the description of Zhu’s algebra.

Corollary 3.1 [10] For every 1 ≤ i ≤ p − 1, there exits a logarithmic, self-dual,
Z≥0-graded W(p)-module denoted by P+i such that the top component P+i (0) is
two-dimensional and L(0) acts on it (in some basis) as

(
hi,1 1
0 hi,1

)
.

Remark 3.1 The vertex algebra W(p) also has (p − 1)-logarithmic modules P−i
which cannot be detected byA(W(p)). These modules can be constructed explicitly
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as in [7] and [63]. On the other hand, one can apply the Huang-Lepowsky tensor
product ⊗̂ [51] and get:

P−i :=P+p−i ⊗̂Π(1).

Remark 3.2 Almost everything in this section can be modified, along the lines of [5,
6], to N = 1 vertex superalgebras, by consideration of odd lattices and by tensoring
VL with the free fermion vertex superalgebra.

4 W-Algebra Extensions of Minimal Models

If we consider L =√
pp′Q, where p and p′ are relatively prime and strictly big-

ger than one, there are additional degrees of freedom entering the construction of
screening operators. These values allow us to construct more complicated vertex
algebras, closely related to affine W-minimal models.

For simplicity we only consider the case Q = A1, well studied in the physics
literature.

The setup is L=√
pp′Zα1, 〈α1, α1〉 = 2. To avoid (annoying) radicals, let α =√

pp′α1. Then

L= Zα, 〈α,α〉 = 2pp′.

We construct VL as before but now we choose

ωp,p′ = ωst + p− p′
2pp′

α(−2),

such that the central charge is 1− 6 (p−p
′)2

pp′ (minimal central charges [65]). There

are again two screening operators here [28, 29] (cf. [9, 11]):

Q= eα/p′0 and Q̃= e−α/p0

Although the rank is one, the replacement for W(p)Q involves both screenings,
namely

Wp,p′ :=KerVL Q∩KerVL Q̃.

Compared to W(p)Q this vertex algebra is more complicated and it is no longer
simple [9]. The inner structure of VL, and of Wp,p′ , as a Virasoro algebra module,
can be visualized via the following diagram describing the semisimple filtration
of VL. Here all • symbols denote highest weight vectors for the Virasoro algebra
and they generate the socle part of VL. Similarly, all / symbols are representatives
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of the top part in the filtration, etc.

×

/ •

◦ ◦ � �

/ • / • / •

· · · ◦ � ◦ � ◦ � · · ·

· · · / • / • / • · · ·

· · · · · ·
The W-algebra Wp,p′ is generated by all • (the socle part) and the vacuum vector×.
Clearly, the socle part forms a nontrivial ideal in W(p,p′).

Conjecture 4.1 Assume that (p,p′)= 1. The vertex algebra Wp,p′ is C2-cofinite

with 2pp′ + (p−1)(p′−1)
2 -irreducible modules.

4.1 The Triplet Vertex Algebra Wp,2

There are not many rigorous results about the W-algebras Wp,p′ , except for p′ = 2
[8, 11]. We believe that some of the techniques introduced in [8, 11] are sufficient
to prove the C2-cofiniteness for all p and p′.

The triplet vertex algebra Wp,2 can be realized as a subalgebra of VL generated
by ω and primary vectors

F =Qe−3α/2, H =GF, E =G2F,

where G is (new) screening operator defined by

G=
∞∑

i=1

e
α/2
−i e

α/2
i

i
.

Therefore, the triplet vertex algebra Wp,2 is W-algebra of type

W(2, h,h,h)
(
h= (2n+ 1)(pn+ p− 1)

)
.

The next result shows that Conjecture 4.1 holds for p′ = 2.

Theorem 4.1 [9, 11] We have:

(1) Every Virasoro minimal model for central charge cp,2 is a module for Wp,2.
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(2) Wp,2 has exactly 4p+ p−1
2 irreducible modules.

(3) Wp,2 is C2-cofinite.
(4) Wp,2 is irrational and admits logarithmic modules.

Let p = 3. Then W3,2 is called the triplet c = 0 vertex algebra. Let us recall
Zhu’s algebra for this vertex algebra.

Generators of A(W3,2): [ω], [H ], [E], [F ].

Theorem 4.2 [10] Zhu’s algebra A(W3,2) decomposes as a direct sum:

A(W3,2) =
⊕

h∈S(2)
Mh ⊕

⊕

h∈S(1)
Ih ⊕C−1/24,

S(2) =
{

5,7,
10

3
,

33

8
,

21

8
,

35

24

}
, S(1) =

{
0,1,2,

1

3
,

1

8
,

5

8
,
−1

24

}
,

where Mh is ideal isomorphic to M2(C), h ∈ S(2), Ih is 2-dimensional ideal,
h ∈ S(1), h �= 0, h �= −1/24, C−1/24 is 1-dimensional ideal, I0 is 3-dimensional
ideal.

Remark 4.1 The previous theorem shows that in the category of W3,2-modules, the
projective cover of trivial representation should have L(0)-nilpotent rank three. This
result is used in the fusion rules analysis for the c= 0 triplet algebra (cf. [44, 45]).

In [11], we proved that in the category of Wp,2-modules, the projective cover
of every minimal model should have L(0)-nilpotent rank three. We expect the same
result to hold for general minimal (p,p′)-models.

5 Construction of Logarithmic Modules and Related Problems

In Sect. 3 we propose a large family of (conjecturally) C2-cofinite vertex algebras
coming from integral lattices. Now we examine indecomposable representations for
these algebras.

5.1 Progenerator and Logarithmic Modules

A central question in representation theory of vertex algebra (or any algebraic struc-
ture) is to understand the structure of indecomposable modules. As it is well-known,
for rational3 vertex algebras it is sufficient to classify irreducible modules. In con-
trast, for irrational C2-cofinite vertex algebras (with finitely many irreps) it is es-
sential to analyze the projective covers Pi of irreducibles Mi , i ∈ Irr [46]. Provided

3Here for simplicity we assume strong rationality, meaning that for a given VOA every (weak)
module is completely reducible.
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that we have a good description of Pi → Mi , we can then form a progenerator
P =⊕

i∈IrrPi , and compute

A= EndV (P )
op,

which is known to be finite-dimensional. This associative algebra plays a major rule
in representation theory, and the least it gives the Morita equivalence of abelian
categories

f.g V -Mod∼= f.d. A-Mod.

As we shall see later, the same algebra is also important for purposes of modu-
lar invariance. Because the category V -Mod has a natural braided tensor category
structure [51], it is expected that one can do better and find a braided Hopf algebra
A such that the above equivalence holds at the level of braided tensor categories
(this is known in some cases [28, 29, 63]).

The main problem here is that there is no good construction of Pi even in the
simplest case due to the fact that projective modules of irrational C2-cofinite ver-
tex algebras are often logarithmic, that is, non-diagonalizable with respect to the
Virasoro operator L(0). At the same time the C2-cofinite vertex algebra is confor-
mally embedded inside a rational lattice vertex algebra, which is known to have no
logarithmic modules. Thus we cannot simply use the larger algebra to construct all
relevant modules for the smaller algebra (except perhaps for the irreducibles [4]).

Thus, in order to maneuver ourselves into a situation in which EndV (P ) can
be studied, we first discuss construction of general logarithmic modules. There
are other related problems such as construction of intertwining operators among
irreducible modules [38, 50, 59], which we do not discuss here.

5.2 Screenings and Logarithmic Modules

Here we propose a very general construction of logarithmic modules [31, 47, 57–
59] for vertex algebras coming from screenings operators as in Sect. 3. As we shall
see, in some cases these modules are indeed projective covers. Our methods is based
on screenings, local systems of vertex operators [54], together with deformation of
the vertex algebra action [56] (cf. also [8]). Conjecturally, the method introduced
here is sufficient to construct all projective covers for vertex algebras considered in
Sect. 3.

Let V be a vertex algebra of CFT type and let v ∈ V be a primary vector of
conformal weight one, and

Y(v, x)=
∑

n∈Z
vnx

−n−1.
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As in [56] we let

�(v,x)= xv0 exp

( ∞∑

n=1

vn

−n(−x)
−n

)

. (4)

If v0 acts semisimply on V and w is its eigenvector, the expression xv0w is defined
as xλw, where λ is the corresponding eigenvalue. But (4) is ambiguous if v0 does
not act semisimply, Still the next result [8] easily follows from [56].

Theorem 5.1 Assume that V and v are as above. Let V be the vertex subalgebra
of V such that V ⊆ KerV v0. Assume that (M,YM) is a V -module. Define the pair
(M̃, ỸM̃ ) such that

M̃ =M as a vector space,

ỸM̃ (a, x) = YM
(
�(v,x)a, x

)
for a ∈ V .

Then (M̃, ỸM̃ ) is a V -module.

Corollary 5.1 Assume that (M,YM) is a V -module such that L(0) acts semisimply
on M . Then (M̃, ỸM̃ ) is a logarithmic V -module if and only if v0 does not act
semisimply on M .

By using this method logarithmic W(p)Q-modules (including projective covers)
can be constructed by taking v = e−αi/√p [8]. But in general (cf. [8, 63]) one cannot
construct all projective covers simply by taking v to be a primary vector inside
the generalized vertex algebra VL◦ . Instead we require more complicated operators
not present in the extended algebra VL◦ (for a recent application of this circle of
ideas see [12]). Then, when combined with W(p)Q (and not all of VL!), these more
complicated local operators v[i](z) (here [i] has no particular meaning; it merely
indicates some sort of “power” construction) became mutually local with W(p)Q,
which allows us to extend our W-algebra with v[i](z) by using Li’s theory of local
systems [54]. Then we cook up a � operator and consider the residue

v
[i]
0 = Resz0 v

[i](z),

which also annihilate W(p)Q, and again apply Theorem 5.1.
Already from this discussion we infer

Corollary 5.2 The vertex algebra W(p)Q is irrational.

This result requires a single screening e
−αi/√p
0 .
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6 Some Logarithmic Modules for W(p)Q

In this section we shall describe a family of such logarithmic representations for
W(p)Q based on the second power of screening operators. We present a new local-
ity result which enables us to use concepts developed in [8] and described above.
To exemplify the construction we only consider Q = A1, and focus on W(p), but
everything in this section applies to α replaced by

√
pαi . Here p > 1. Define the

following lattices

L= Zα, L̃= Z
α

p
,

where 〈α,α〉 = 2p.
Then VL̃ has the structure of a generalized vertex operator algebra, and its subal-

gebra VL is a vertex operator algebra with the Virasoro vector

ω= 1

4p
α(−1)2 + p− 1

2p
α(−2).

Let a = e−α/p . In the generalized vertex algebra VL̃ the following locality rela-
tion holds:

(z1 − z2)
−2/pY (a, z1)Y (a, z2)− (z2 − z1)

−2/pY (a, z2)Y (a, z1)= 0.

Define

φ(t) = pt1/p2F1

(
1/p,2/p
1+ 1/p

; t
)
=

∞∑

j=0

(−1)j

j + 1/p
tj+1/p

(−2/p

j

)
,

G(z) = Resz1

(
φ(z/z1)Y (a, z1)Y (a, z)+ φ(z1/z)Y (a, z)Y (a1, z1)

)
.

Let G(z)=∑
n∈ZG(n)z−n−1. Then, for n ∈ Z, we get

G(n) =
∑

j≥0

(−1)j

1/p+ j
(−2/p

j

)
(a−1/p−j+na1/p+j + a−1/p−j a1/p+j+n),

G(0) = 2
∑

j≥0

(−1)j

1/p+ j
(−2/p

j

)
a−1/p−j a1/p+j .

We infer the following result:

Proposition 6.1 We have

(1)
[
L(n),G(m)

]=−mG(n+m) (m,n ∈ Z).
In particular, G(0) is a screening operator.
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(2) The fields G(z) and L(z) are mutually local. More precisely:

(z1 − z2)
3[L(z1),G(z2)

]= 0.

We also have:

L(z)0G(z)=G′(z), L(z)1G(z)=G(z), L(z)nG(z)= 0 for n≥ 2.

(3) Let L̃(n)= L(n)+G(n). Then operators L̃(n) define on

M+
2 = VL+((p+1)/(2p))α ⊕ VL+((p−3)/(2p))α,

M−
2 = VL+(1/(2p))α ⊕ VL+(−3/(2p))α

the structure of the module for the Virasoro algebra.

Remark 6.1 One can also represent G(z) by using contour integrals as in [63], and
give a different proof of Proposition 6.1 by using methods developed in [64]. One
defines

Q[2](z)=
∫

γ

dtY (a, z)Y (a, tz)z

where γ is a certain contour. For p ≥ 2, we can show that

Γ (2/p+ 1)Γ (−1/p)

Γ (1/p+ 1)
G(z)=Q[2](z),

where Γ (z) is the usual Γ -function.

Let â = eα−α/p . Define

G(z) =
∑

n∈Z
G(n)z−n−1

= Resz1

(
φ(z/z1)Y (a, z1)Y (̂a, z)+ φ(z1/z)Y (̂a, z)Y (a, z1)

)
.

Then

G(n)=
∑

j≥0

(−1)j

1/p+ j
(−2/p

j

)
(̂a−1/p−j+na1/p+j + a−1/p−j â1/p+j+n).

Let

μ= p

p− 1
.

First we need the following result.

Lemma 6.1 We have the following relations:
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(i) [eα0 ,G(n)] = −nμG(n− 1); i.e., [eα0 ,G(z)] = μG
′
(z);

(ii) [eα0 ,G(0)] = 0,
(iii) [L(n),G(m)] = −(n+m+ 1)G(n+m).

Proof Let us prove relation (i). First we notice that

eα0 a = μDâ.
Then we have
[
eα0 ,G(z)

] = μResz1

(
φ(z/z1)∂z1Y (̂a, z1)Y (a, z)+ φ(z1/z)Y (a, z)∂z1Y (̂a, z1)

)

+μResz1

(
φ(z/z1)Y (a, z1)∂zY (̂a, z)+ φ(z1/z)∂zY (̂a, z)Y (a, z1)

)

= −μResz1 z
1/pz

1/p−1
1

× (
(z1 − z)−2/pY (̂a, z1)Y (a, z)− (z− z1)

−2/pY (a, z)Y (̂a, z1)
)

+μResz z
1/p−1z

1/p
1

× (
(z1 − z)−2/pY (a, z1)Y (̂a, z)− (z− z1)

−2/pY (̂a, z)Y (a, z1)
)

+μResz
(
G(z)

)

= μResz
(
G(z)

)
.

This proves relation (i). The relation (ii) follows from (i). The proof of (iii) is similar
to that of (ii). �

Recall that the triplet vertex algebra W(p) is realized as a subalgebra of VL
generated by the vectors

ω, F = e−α, H =QF, E =Q2F,

where Q= eα0 .
The doublet vertex algebra A(p) is the subalgebra of VL̃ generated by

x− = e−α/2, x+ =Qa−α/2.

Clearly, W(p) is a subalgebra of A(p).

Proposition 6.2 We have

(i) The fields G(z), G(z), Y(x−, z), Y(x+, z) are mutually local.
(ii)

U = spanC
{
G(z);Y(v, z)|v ∈W(p)

}
,

Ue = spanC
{
G(z),G(z);Y(v, z)|v ∈W(p)

}

are local subspaces of fields acting on M±
2 .
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Proof It is only non-trivial to prove that G(z) and Y(x+, z) are local. We have

[
Y

(
x+, z1

)
,G(z2)

] = [
Q,

[
Y

(
x−, z1

)
,G(z2)

]]− [
Y

(
x−, z1

)
,
[
Q,G(z2)

]]

= −[
Y

(
x−, z1

)
,
[
Q,G(z2)

]]
. (5)

The proof easily follows if we invoke Lemma 6.1 and the fact that the fields
Y(a−, z1) and eα−α/p(z) are local. This proves (i). By using a standard result on
locality of vertex operators [54, 55], we invoke that the field G(z), G(z) are local
with all fields Y(v, z), v ∈A(p). In particular, the sets U and Ue are local. �

Remark 6.2 We believe that this locality result is new. One can see thatG(z) is local
only with W(p), but it is not local with all fields Y(a, z), a ∈ VL. In particular,G(z)
is not local with Heisenberg field α(z).

Let V (resp. Ve) be the vertex algebra generated by local subspace U (resp. Ue).
It is clear that

v �→ Y(v, z)
(
v ∈W(p)

)

is a injective homomorphism of vertex algebras. So W(p) can be considered as a
subalgebra of V .

Theorem 6.1 We have:

(i) W(p).G(z)= spanC{Y(v, z)nG(z)|v ∈W(p),n ∈ Z} ∼=Π(p− 1).
(ii) V ∼=W(p)⊕Π(p− 1).

(iii) Ve =W(p)⊕E, where E =W(p).G(z).
(iv) There is a non-split extension

0→Π(p− 1)→E→Λ(1)→ 0.

Proof It is clear that V =W(p) ⊕W(p).G(z). So it remains to identify cyclic
W(p)-module W(p).G(z). The locality relations

(z1 − z2)
2p−1[Y(x, z1),G(z2)

]= 0
(
x ∈ {E,F,H }),

imply that W(p).G(z) is a Z≥0-graded W(p)-module with lowest weight 1.
Top component is 2-dimensional and spanned by G(z) and [Q,G(z)]. By using
representation-theoretic results from [4] we see that this module is isomorphic to
Π(p− 1), and that E/Π(p− 1)∼=Λ(1). The proof follows. �

Remark 6.3 We know that there is also a non-split extension

0→Π(p− 1)→ VL+α−α/p→Λ(1)→ 0.

But, VL+α−α/p �E.
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The operators G̃(z)n, n ∈ Z, define on V the structure of a module for the Heisen-
berg algebra such that G̃(z)0 acts trivially. Therefore the field

�
(
G̃(z), z1

)= zG̃(z)01 exp

(∑

n=1

G̃(z)n

−n z−n1

)

is well defined on V . As in [8] we have the following result:

Theorem 6.2 Assume that (M,YM(·, z1)) is a weak V-module. Define the pair
(M̃, ỸM̃ (·, z1)) such that

M̃ =M as a vector space,

ỸM̃
(
v(z), z1

) = YM
(
�

(
G̃(z), z1

)
v(z), z1

)
.

Then (M̃, ỸM̃ (·, z1)) is a weak V-module. In particular, (M̃, ỸM̃ (·, z1)) is a
W(p)-module.

Recall that M±
2 are modules for the vertex algebra V with the vertex operator

map

Y
(
v(z), z0

)= v(z0), v(z) ∈ V .
Applying the above construction we get a (new) explicit realization of logarithmic
modules for W(p).

Theorem 6.3 (M̃±
2 , Ỹ ) is a W(p)-module such that

Ỹ (v, z)= Y(v, z)+
∞∑

n=1

G(z)nY (v, z)

−n (−z)−n, v ∈W(p).

In particular,

Ỹ (ω, z)= L̃(z).
The operator L̃(0) acts on M̃±

2 as

L̃(0)= L(0)+G(0)

and it has nilpotent rank 2.

Remark 6.4 By applying the methods developed in [8] we see that M̃±
2 are self-

dual, logarithmic modules of semisimple rank three. Moreover, M̃+
2 (resp. M̃−

2 ) is
projective cover ofΛ(2) (resp.Π(p−2)). The same modules have been constructed
in [63] by using a slightly different method.
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7 Conclusion

We hope that we have conveyed the main ingredients behind the plethora of W-
algebras connected to Logarithmic Conformal Field Theory. There are still numer-
ous problems to be resolved at the structural level (e.g. C2-cofiniteness), but we hope
that the present techniques in vertex algebra theory—with further constructions as
in Sect. 6—are sufficient to resolve the main conjectures in the paper, including
construction of projective covers. Eventually this development on the vertex algebra
side will play an important role in finding a precise relationship with the finite-
dimensional quantum groups at root of unity proposed in [25, 27–29].

There are several aspects of C2-cofinite W -algebras that we did not discuss in
this paper. Here we briefly outline on these developments.

(1) There is an important (simple-current) extension of the triplet vertex algebra
W(p), called the doublet A(p). If p is even, that A(p) carries the structure
of a vertex algebra (or vertex superalgebra). Its representation theory has been
developed in [13]. This extension can be constructed in the higher rank as well.
Also, a large portion of the present work extends to N = 1 vertex operator su-
peralgebras.

(2) We expect to see rich combinatorics underlying W(p)Q, including properties of
graded dimensions of modules and of some distinguished subspaces examined
in [60] (see also [33]). Another important facet of the theory was initiated in
[9, 11] in connection to constant term identities of Morris-Macdonald type (see
also [18]). These identities are expected to play a role in the theory of higher
Zhu’s algebras.

(3) Modular invariance and one-point functions on the torus are important ingredi-
ents in CFT [68]. In [7] (cf. also [32]) we have shown that the space of one-
point functions for W(p) is 3p − 1 dimensional. But in view of [61], it is not
completely obvious how to describe the space of one-point functions explic-
itly via certain pseudotraces. For Wp,p′ we still do not know precisely even its
dimension, although there is an obvious guess by looking at the properties of
irreducible characters [27–29]. One-point functions for the C2-cofinite vertex
algebra SF+ coming from symplectic fermions [1] have been recently studied
in [15]. Some general results about “logarithmic modular forms” are obtained
in [53].

(4) There is ongoing effort in the direction of constructing the full rational confor-
mal field theory [48, 49]. Although it is not clear how to generalize the notion of
full field algebra to general C2-cofinite vertex algebras, some progress has been
achieved recently on the construction of the bulk space, in the case of the triplet
vertex algebra W(p) and W2,3 [43–45] (cf. also [67] for general p and p′).
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“Tensor Categories and Conformal Field Theory”, June 2011, Beijing. Thus, except for Sect. 5 and
some constructions in Sect. 2, all the material is based on earlier works by the authors (we should
say that some constructions in Sect. 2 were independently introduced in [25]). We are indebted
to the organizers for invitation to this wonderful conference. We also thank A. Semikhatov, A.
Gaı̆nutdinov, A. Tsuchiya, I. Runkel, Y. Arike, J. Lepowsky, L. Kong and Y.-Z. Huang for the



268 D. Adamović and A. Milas

interesting discussion during and after the conference. We are also grateful to Jinwei Yang for
helping us around in Beijing.

References

1. Abe, T.: A Z2-orbifold model of the symplectic fermionic vertex operator superalgebra. Math.
Z. 255, 755–792 (2007)

2. Abe, T., Buhl, G., Dong, C.: Rationality, regularity and C2-cofiniteness. Trans. Am. Math.
Soc. 356, 3391–3402 (2004)
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C1-Cofiniteness and Fusion Products for Vertex
Operator Algebras

Masahiko Miyamoto

Abstract Let V be a vertex operator algebra. We prove that if U and W are C1-
cofinite N-gradable V -modules, then a fusion product U �W is also a C1-cofinite
N-gradable V -module, where the fusion product is defined by (logarithmic) inter-
twining operators.

1 Introduction

The tensor product theory is a powerful tool in the theory of representations. Unfor-
tunately, in the theory of vertex operator algebras (shortly VOA), a tensor product
(we call “fusion product”) for some modules may not exist in the category of mod-
ules of vertex operator algebras. In order to avoid such an ambiguity, we will intro-
duce a new approach to treat fusion products. Let us explain it briefly. The details
are given in Sect. 3. Let V =⊕∞

n=K Vn be a vertex operator algebra (shortly VOA)
and modN(V ) denote the set of N-gradable (weak) V -modules, where a (weak) V -
module W is called N-gradable if W =⊕∞

m=0W(m) such that

vkw ∈W(m+wt(v)−k−1)

for any homogeneous element v ∈ Vwt(v), k ∈ Z and w ∈W(m). It is well-known that

g(V ) := V ⊗C C
[
x, x−1]

/(
L(−1)⊗ 1− 1⊗ d

dx

)
V ⊗C C

[
x, x−1]

has a Lie algebra structure and all (weak) V -modules are g(V )-modules (see [1]).
For U,W ∈ modN(V ), we introduce a g(V )-module U � W (or its isomorphism
class) as a projective limit of a direct set of V -modules (by viewing them as g(V )-
modules). So, a g(V )-module U �W always exists. The key point is that a fusion
product for U,W ∈modN(V ) exists if and only if U �W is a V -module (and so it
is a fusion product).

The main purpose of this paper is to explain the fusion products by emphasizing
the importance of C1-cofiniteness. The importance of the C1-cofiniteness condi-
tions on modules was firstly noticed by Huang in [2], where he has proved that
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intertwining operators of a C1-cofinite N-gradable module from a C1-cofinite N-
gradable module to an N-gradable module satisfy a differential equation. He has
also shown the associativity of intertwining operators amongC1-cofinite N-gradable
modules by using the space of solutions of this differential equation. We will prove
Key Theorem by using his idea. In order to follow his arguments, we give a slightly
different definition of Cm-cofiniteness for modules.

Definition 1 Set m = 1,2, . . . . A V -module U is said to be “Cm-cofinite as a V -
module” if Cm(U) := SpanC{v−mu | u ∈U,v ∈ V,wt(v) > 1−m} has a finite codi-
mension in U .

This is slightly different from the old one. For example, any VOA V is al-
ways C1-cofinite as a V -module in our definition. Since (L(−1)v)−m = mv−m−1

and wt(L(−1)v)= wt(v)+ 1, Cm-cofiniteness implies Cm−1-cofiniteness for m=
2,3, . . . .

We will prove the following theorem.

Key Theorem Let V be a VOA. For each m= 1,2, . . . and Cm-cofinite N-gradable
V -modules U and W , there is an integer fm(U,W) such that if T is an N-gradable
V -module and there is a surjective (logarithmic) intertwining operator in I

(
T

U W

)
,

then dimT/Cm(T ) < fm(U,W). In particular, T is also Cm-cofinite as a V -
module.

Hereafter I
(
T

U W

)
denotes the space of (logarithmic) intertwining operators of

type
(
T

U W

)
. For φ ∈ Hom(T ,S) and Y ∈ I( T

U W

)
, we can define an intertwining

operator φ ◦Y of type
(
S

U W

)
by

(φ ◦Y)(u, z)w := φ(
Y(u, z)w

)
for u ∈U,w ∈W.

Y ∈ I( T
U W

)
is called “surjective” if for any proper injection ε : E→ T and any

intertwining operator J ∈ I( E
U W

)
, we have ε ◦ J �= Y . As an application, we will

prove the following theorem.

Main Theorem Let m= 1,2, . . . and let V be a VOA. If U and W are N-gradable
Cm-cofinite V -modules, then a fusion product U � W is also a Cm-cofinite N-
gradable V -module.

As an application of Main Theorem, we have:

Corollary 2 Let V be a simple VOA with V ∼= V ′, where V ′ denotes the restricted
dual of V . If there is a V -module W such that W and its restricted dual W ′ are both
C2-cofinite, then V is C2-cofinite.
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2 Proof of Key Theorem

We first assume that U and W are indecomposable. Since U and W are Cm-
cofinite, there is N ∈ N such that U = Cm(U)+ E and W = Cm(W)+ F , where
E =⊕N

k=0UrU+k and F =⊕N
k=0WrW+k and rU and rW denote the lowest weights

of V -modules U andW , respectively. We fix bases {pi | i ∈ I } of E and {qj | j ∈ J }
of F consisting of homogeneous elements, respectively.

Let Y ∈ I( T
U W

)
be a surjective intertwining operator and let T ′ denote the re-

stricted dual of T . For each θ ∈ T ′, u ∈U , w ∈W , we define a bilinear form
〈
θ,Y(u, z)w

〉 ∈C{z}[log z]
by θ(Y(u, z)w). Applying the idea in [2] to θ ∈ Annih(Cm(T )) ∩ T ′, we have the
following lemma.

Lemma 3 For p ∈U , q ∈W and θ ∈Annih(Cm(T ))∩ T ′,
F(θ,p, q; z) := 〈

θ,Y(p, z)q
〉

is a linear combination of {F(θ,pi, qj ; z) | i ∈ I, j ∈ J } with coefficients in
C[z, z−1]. We are able to choose these coefficients independently from the choice
of θ . Moreover, there is an integer fm(U,W) given by U and W only such that
dim(C/Cm(T )) < fm(U,W).

Proof We will prove Lemma 3 for m = 1. For m ≥ 2, the proofs are similar. We
will prove the first assertion in Lemma 3 by induction on wt(p)+ wt(q). Clearly,
we may assume that wt(p) > N + rU or wt(q) > N + rW . If wt(p) > N + rU ,
then p =∑

k v
k
−1a

k with vk ∈ V and ak ∈ U . We note that this expression does
not depend on the choice of θ . Since p is a linear sum, we are able to treat each
term separately, that is, we may assume p = v−1a with v ∈ V and a ∈ U . Then for
θ ∈Annih(C1(T ))∩ T ′, we have:

〈
θ,Y(p, z)q

〉= 〈
θ,Y(v−1a, z)q

〉

= 〈
θ,Y−(v, z)Y(a, z)q +Y(a, z)Y+(v, z)q

〉

= 〈
θ,Y(a, z)Y+(v, z)q

〉
, (2.1)

where Y−(v, z)=∑
h<0 vhz

−h−1 and Y+(v, z)=∑
h≥0 vhz

−h−1. This is a reduc-
tion on the sum of weights because wt(vhq) < wt(v)+wt(q) for h≥ 0, that is, all
terms of Y+(v, z)q have less weights than wt(v)+wt(q). An important thing is that
the processes of these reductions are irrelevant with the choice of θ .

Similarly, if wt(q) > N + rW , then we may assume q = v−1b with v ∈ V and
b ∈W and we have:

〈
θ,Y(p, z)q

〉= 〈
θ,Y(p, z)v−1b

〉

= 〈
θ, v−1Y(p, z)b

〉+
〈

θ,

∞∑

i=0

(−1

i

)
z−1−iY(vip, z)b

〉

=
∞∑

i=0

(−1

i

)
z−1−i 〈θ,Y(vip, z)b

〉
. (2.2)
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We also note that this calculation is independent of the choice of θ and this is also
a reduction on the weights because wt(vip)+wt(b) <wt(v−1b)+wt(p) for i ≥ 0.
Therefore, 〈θ,Y(p, z)q〉 is a linear combination of {〈θ,Y(pi, z)qj 〉 | i ∈ I, j ∈ J }
with coefficients in C[z, z−1] and these coefficients are independent of the choice
of θ .

We next prove the second assertion in Lemma 3. We consider an |I | × |J |-
dimensional vector A = (〈θ,Y(pi, z)qj 〉)i,j . Then there is a square matrix B ∈
M|I |×|J |,|I |×|J |(C[z, z−1]) which does not depend on the choice of θ such that

d

dz
A= (〈

θ,Y
(
L(−1)pi, z

)
qj

〉)
i,j
= BA. (2.3)

The space of solutions of the above differential equation (2.3) has a finite dimension
and so the space of the choice of θ in A is also of finite dimension. Since Y is
surjective, dimT/C1(T ) is bounded by a number f1(U,W) which does depend on
U and W only. In particular, T is C1-cofinite.

We next assume that U = ⊕
U(r) and W = ⊕

W(k) with indecomposable
V -modules U(r) and W(k). Clearly, U(r) and W(k) are also C1-cofinite as V -
modules. Since wt(v−1u) > wt(u) for v ∈ V , u ∈ U(r) with wt(v) > 0, we have
U(r)/C1(U

(r)) �= 0 for every r and so U is a finite direct sum of indecompos-
able modules. Similarly, so is W . For Y ∈ I( T

U W

)
and for each (r, k), we define

Y(r,k) ∈ I( T (r,k)

U(r) W(k)

)
by restrictions, that is,

Y(r,k)
(
u(r), z

)
w(k) := Y

(
u(r), z

)
w(k) for u(r) ∈U(r),w(k) ∈W(k)

and T (r,k) is the subspace of T spanned by all coefficients of Y(r,k)(u(r), z)w(k).
As we showed, there are integers f1(U

(r),W(k)) such that dimT (r,k)/C1(T
(r,k))≤

f1(U
(r),W(k)). Since T =∑

r,k T
(r,k) and C1(T

(r,k))⊆ C1(T ), we have

dimT/C1(T )≤
∑

r,k

dimT (r,k)/C1
(
T (r,k)

)≤
∑

r,k

f1
(
U(r),W(k)

)

as we desired.
This completes the proof of Key Theorem. �

3 On Fusion Products

In this section, we would like to explain our approach to the fusion product of two
modules. The fusion product of modules in the theory of vertex operator algebra
are firstly defined by Huang and Lepowsky in several ways (see [3]). We go back
to the original concept of tensor products, that is, as stated in the introduction of
[3], it should be a universal one in the following sense, that is, if U and W are V -
modules, then a fusion product is a pair (U �W,YU�W) of a V -module U �W

and an intertwining operator YU�W ∈ I(U�W
U W

)
such that for any V -module T and
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any intertwining operator Y ∈ I( T
U W

)
, there is a homomorphism φ : U �W → T

such that φ ◦YU�W = Y , that is,

φ
(
YU�W(u, z)w

)= Y(u, z)w

for any u ∈ U and w ∈W . Unfortunately, in the theory of vertex operator algebra,
unlike the categories of vector spaces, a fusion product module may not exist.

Our idea in this paper is that we first construct a g(V )-module U � W . Fur-
thermore, as we will see, U � W satisfies all conditions (Commutativity, etc.) to
be a V -module except lower truncation property. Associativity is also true if it is
well-defined, that is, if the lower truncation property holds on U �W .

Let us construct it. We fix U,W ∈ modN(V ) and consider the set of surjective
intertwining operators Y of U from W :

F(U,W)=
{
(F,Y)

∣∣∣ F ∈modN(V ),Y ∈ I
(

F

U W

)
is surjective

}
.

Here the set of intertwining operators includes not only formal C-power series but
also all intertwining operators of logarithmic forms.

We define (F 1,Y1) ∼= (F 2,Y2) if there is an isomorphism f : F 1 → F 2 such
that f ◦ Y1 = Y2, that is, f (Y1(u, z)w) = Y2(u, z)w for any u ∈ U , w ∈ W . We
also define a partial order ≤ in F(U,W)/∼= as follows: For (F 1,Y1), (F

2,Y2) ∈
F(W,U),

Y1 ≤ Y2 ⇔ ∃f ∈HomV

(
F 2,F 1) such that f ◦Y2 = Y1.

We note that since Y1 and Y2 are surjective, f is uniquely determined. Clearly, if
Y1 ≤ Y2 and Y2 ≤ Y1, then we have (F 1,Y1)∼= (F 2,Y2).

Lemma 4 F(U,W)/∼= is a (right) directed set.

Proof For Y1 ∈ I
(
F 1

U W

)
and Y2 ∈ I

(
F 2

U W

)
, we define Y by

Y(u, z)w = (
Y1(u, z)w,Y2(u, z)w

) ∈ (
F 1 × F 2){z}[log z] for u ∈U,w ∈W.

Clearly, Y ∈ I(F 1×F 2

U W

)
. Let F ⊆ F 1 × F 2 be the subspace spanned by all coeffi-

cients of Y(u, z)w with u ∈ U , w ∈W , then (F,Y) ∈ F(U,W). Moreover, by the
projections πi : F 1 × F 2 → F i , we have π1 ◦ Y = Y1 and π2 ◦ Y = Y2, that is, we
have (F 1,Y1)≤ (F,Y) and (F 2,Y2)≤ (F,Y) as we desired. �

Since F(U,W)/∼= is a direct set, we can consider a projective limit of
F(U,W)/∼= and we denote it (or a representative of its isomorphism class)
by (U � W,YU�W) (or simply U � W ). Since T is a g(V )-module for any
(T ,Y) ∈ F(U,W), a projective limit U � W is also a g(V )-module. In order to
see the actions of g(V ) on U � W , let us show a direct construction of projec-
tive limit. Let {(F i,Yi ) | i ∈ I } be the set of all representatives of F(U,W)/∼=
and set Yi (u, z) = ∑K

j=0
∑

m∈C u
Yi
(j,m)z

−m−1 logj z for u ∈ U . We consider the
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product (
∏
i∈I F i,

∏
i∈I Yi ) and take subspaces Fr of

∏
i∈I F i spanned by all co-

efficients
∏
i∈I u

Yi
j,wt(w)−1−r+wt(u)w of weights r ∈ C for homogeneous elements

u ∈U , w ∈W and j ∈N. We then set

F =
∐

r∈C
Fr

(
⊆

∏

i∈I
F i

)
. (3.1)

We note that F is C-gradable by the definition.
For v1, v2 ∈ V , since the commutator formula

[
v1
n, v

2
m

]=
∞∑

i=0

(
n

i

)(
v1
i v

2)
n+m−i (3.2)

holds on every F i , we have the commutator formula (3.2) on
∏
i∈I F i and also

on F . L(−1)-derivative property is also true on F since it is true on every F i . For
Associativity, since

(
v1
nv

2)
m
=

∞∑

i=0

(
n

i

)
(−1)i

{
v1
n−iv2

m+i − (−1)nv2
n+m−iv1

i

}
(3.3)

is true for each F i , it is also true on F if the right side of (3.3) is well-defined on F .
Therefore, if V acts on F truncationally, then F becomes a (weak) V -module.

Let us show F ∼= U � W as g(V )-modules. Let πi : F ⊆∏
h∈I F h → F i be

a projection. By the definition, πi ◦ (∏h∈I Yh) = Yi . We note that if (F j ,Yj ) ≤
(F i,Yi ) for i, j ∈ I , that is, if there is a surjective homomorphism φi,j : F i→ Fj

such that φi,j ◦ Yi = Yj , then πj ◦ (∏h∈I Yh) = Yj = φi,j ◦ (Yi ) = φi,j ◦ (πi ◦
(
∏
h∈I Yh)). Therefore, for any α ∈ F , πj (α) = φi,j (πi(α)) and so we have the

following commutative diagram:

πi :
(
F,

∏

h∈I
Yh

)
−→ (

F i,Yi
)

|| Identity ↓ φi,j
πj :

(
F,

∏

h∈I
Yh

)
−→ (

Fj ,Yj
)
.

We note that since Yi are surjective, φi,j are uniquely determined and φjk(φij (Yi (u,
z)w)) = Yk(u, z)w = φik(Yi (u, z)w). Therefore, there is a surjective homomor-
phism φ : F →U �W such that φ ◦ (∏h∈I Yh)= YU�W . On the other hand, since
U �W is a projective limit of (F i,Yi )i∈I , there are ϕi : U �W → F i such that
ϕi ◦ (YU�W)= Yi . Therefore, ϕi ◦ (φ ◦ (∏h∈I Yh))= Yi = πi ◦ (∏h∈I Yh) and so
ϕiφ = πi . Since

⋂
h∈I Kerπh = 0 by the definition, Kerφ = 0 and so (F,

∏
h∈I Yh)

is isomorphic to a projective limit (U �W,YU�W) of F(U,W)/∼=.

Definition 5 We will call U �W a “fusion product” of U and W (even if it is not a
V -module).

We have to note that since YU�W is a projective limit, the powers of log z in
YU�W(w, z)u may not have an upper bound even if U �W is a (weak) V -module.
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However, since YU�W satisfies L(−1)-derivative property, Commutativity and As-
sociativity and etc., we still treat it as an intertwining operator.

4 Proof of Main Theorem

Before we start the proof of Main Theorem, we prove the following lemma.

Lemma 6 If an N-gradable module U =⊕∞
m=0U(m) is C1-cofinite as a V -module,

then dimU(m) <∞ for any m ∈ {0,1, . . .}.

Proof We will prove it by induction on m. For m = 0, since U(0) ∩ C1(U) = {0}
by the definition of C1-cofiniteness, we have dimU(0) ≤ dim(U/C1(U)) <∞. We
next assume dimU(k) <∞ for k = 0, . . . ,m− 1. Then

(Vi)−1U(m−i) := SpanC{v−1u | v ∈ Vi,u ∈U(m−i)}
is also of finite dimension for i = 1,2, . . . ,m since dimVi <∞. Furthermore, since
U(m)/

∑m
i=1(Vi)−1U(m−i) ⊆U/C1(U), we have dimU(m) <∞ as we desired. �

Let U be a C1-cofinite N-gradable module. Since dimU(m) <∞ and L(0) acts
onU(m),U(m) is a finite direct sum of generalized eigenspaces ofL(0). Furthermore,
since U is C1-cofinite as a V -module, there is an integer r such that U(m) ⊆ C1(U)

for m≥ r . Hence there is a finite set {ai ∈C | i ∈ I } such that

U =
⊕

i∈I

∞⊕

m=0

Uai+m,

where Uai+m is a generalized eigenspace of U for L(0) with eigenvalue ai +m. We
note ai �≡ aj (mod Z) for i �= j . In particular, we have

wt(U)⊆
⋃

i∈I
(ai +N),

where wt(U) denotes the set of all weights of elements inU . We may assumeU(r) =⊕
i∈I Uai+r by rearranging the N-grading. We note that if φ : P →Q is surjective

and P,Q ∈modN(V ), then wt(Q)⊆wt(P ).
Let us start the proof of Main Theorem.
By the same arguments in the proof of Key Theorem, we know that

(⊕

r

U(r)

)
�

(⊕

k

W(k)

)
∼=

⊕

r,k

(
U(r) �W(k)

)

and so it is sufficient to prove Main Theorem for indecomposable V -modules U
and W .

As we showed in the proof of Lemma 6, for T =⊕∞
i=0 T(i) ∈modN(V ), we have

Cm(T )∩ T(0) = {0} by the definition of Cm(T ). We also note that if A=⊕∞
i=0A(i)
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and B =⊕∞
j=0B(j) are N-graded V -modules and φ : A→ B is a surjective V -

homomorphism, then φ(Cm(A)) = Cm(B) since v−mφ(a) = φ(v−ma) for a ∈ A
and v ∈ V . In particular, dim(B/Cm(B))≤ dim(A/Cm(A)).

On the other hand, by Key Theorem, there is a number fm(U,W) ∈ N such
that dimT/Cm(T ) < fm(U,W) for any (T ,Y) ∈ F(U,W). Therefore, there is
(S,J ) ∈F(U,W) such that for any (T ,Y) ∈F(U,W) we have dim(T /Cm(T ))≤
dim(S/Cm(S)). As we have shown, there is a finite set {ai ∈C | i ∈ I } such that

wt(S)⊆
⋃

i∈I
(ai +N).

We fix (S,J ) and {ai | i ∈ I } for a while.

Lemma 7 For any (T ,Y) ∈F(U,W), we have wt(T )⊆⋃
i∈I (ai +N).

Proof For (T ,Y) ∈F(U,W), there is (P,I) ∈F(U,W) such that (P,I) > (T ,Y)
and (P,I) > (S,J ). Since (P,I) > (T ,Y), we have wt(T ) ⊆ wt(P ) and so it
is sufficient to prove Lemma 7 for (P,I). Therefore, we may assume (T ,Y) >
(S,J ). Let φ : T → S be a surjection. In this case, since φ(Cm(T )) ⊆ Cm(S) and
dim(T /Cm(T )) ≤ dim(S/Cm(S)), we have Ker(φ) ⊆ Cm(T ) and Ker(φ) ∩ T(0) =
{0}. Therefore, we have

wt(T )⊆wt(T0)+N⊆wt(S)+N⊆
⋃

i∈I
(ai +N)

as we desired. �

We come back to the proof of Main Theorem. Since

(U �W)r ⊆
∏

(T ,Y)∈F(U,W)

Tr

by the construction (3.1),

wt(U �W)⊆
⋃

i∈I
(ai +N).

Namely, the weights of elements in U �W is bounded below and so vnw = 0 for
a sufficiently large n for w ∈ U � W and v ∈ V . Therefore, U � W is a (weak)
N-gradable V -module. It is also C1-cofinite as a V -module by Key Theorem.

The remaining thing is to show that YU�W is a (logarithmic) intertwining oper-
ator. By the construction of YU�W , it has a form:

YU�W(u, z)w =
∞∑

i=0

∑

n∈C
u(i,n)z

−n−1 logi z. (4.1)

We have to prove that powers of log z in (4.1) are bounded. Since the homo-
geneous subspaces of U , W and U � W are of finite dimension by Lemma 6,
L(0)nil = L(0)−wt acts nilpotently on every homogeneous spaces U(n), W(n) and
(U � W)(n). Furthermore, since L(0)nil commutes with all actions vk for v ∈ V
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and k ∈ Z and U � W is C1-cofinite as a V -module, there is an integer N such
that (L(0)nil)N(U � W) = 0. Similarly, we may assume (L(0)nil)NW = 0 and
(L(0)nil)NU = 0 by taking N large enough. From the L(−1)-derivative property
for YU�W , we have

(i + 1)u(i+1,n)w =−L(0)nil(u(i,n)w)+
(
L(0)nilu

)
(i,n)

w

+ u(i,n)
(
L(0)nilw

)
, (4.2)

Therefore, u(k,n)w = 0 for k ≥ 3N , u ∈U and w ∈W , which implies that YU�W is
a (logarithmic) intertwining operator.

This completes the proof of Main Theorem. �

5 Discussion

At last, we would like to note one more thing. Although we have treated all logarith-
mic intertwining operators, if we restrict intertwining operators into formal C-power
series, that is, if we consider

Ffp(U,W)= {
(T ,Y) ∈F(U,W) | Y(u, z)w is a formal C-power series

for any u ∈U and w ∈W}

then Ffp(U,W) is still a direct set and so we are able to consider its projective limit,
that is, another fusion product U �fp W in this sense.
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